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Abstract

Multiband frequency domain synthesis consists in the minimization of a finite family of closed-loop transfer functions on
prescribed frequency intervals. This is an algorithmically difficult problem due to its inherent nonsmoothness and nonconvexity.
We extend our previous work on nonsmooth H∞ synthesis to develop a nonsmooth optimization technique to compute local
solutions to multiband synthesis problems. The proposed method is shown to perform well on illustrative examples.
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1 Introduction

We present a new algorithmic approach to multi fre-
quency band feedback control synthesis. We consider si-
multaneous minimization of a finite family of closed-loop
performance functions

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
, (1)

where K is the feedback controller, Twi→zi(K, ·) the ith
closed-loop performance channel, and ‖Twi→zi(K)‖Ii

the peak value of the transfer function maximum singu-
lar value norm on a prescribed frequency interval Ii:

‖Twi→zi(K)‖Ii = sup
ω∈Ii

σ (Twi→zi(K, jω)) .

Typically, each Ii is a closed interval or a finite union of
intervals. For a single channel, i = 1 and I1 = [0,∞],
minimizing f(K) reduces to standard H∞ synthesis.

The present approach to multiband synthesis expands
on [1–3,14], where this idea was laid down for standard
H∞ synthesis. It leads to efficient algorithms, because a
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substantial part of the computations is carried out in the
frequency domain, where the plant state dimension only
mildly affects cputimes. Our method avoids the difficul-
ties of bilinear matrix inequalities, where the presence of
Lyapunov variables, whose number grows quadratically
with the state-space dimension, quickly leads to large
size optimization programs as systems get sizable. We
have identified this as the major source of breakdown for
most existing codes.

Multiband control design is of great practical interest
mainly for two reasons:

- Very often design criteria are expressed as frequency
domain constraints on limited frequency bands.

- In the traditional approach, weighting functions are
used to specify frequency bands. But the search for
suitable weighting functions is often critical and in-
creases the controller order.

Despite its importance, only few methods for multiband
synthesis have been published. In [12], the authors de-
velop an extension of the KYP Lemma [18] to handle
band restricted frequency domain constraints. The re-
sulting problem is nonconvex even in state-feedback.

There exist classical loop-shaping methods, like QFT
[11], which exploit graphical tools and interfaces, but to
work satisfactorily require an advanced level of intuition.
QFT is no longer suited under additional structural con-
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straints on the controller.

Similar comments apply to methods based on the Youla
parametrization, which lead to high-order controllers [7].
Classical Bode, Nyquist and Nichols plots to design sim-
ple controllers such as PID and phase-lag [4,10] are lim-
ited to SISO systems, even though some generalizations
to MIMO systems have been tried [13]. Altogether we
believe that frequency band synthesis warrants a fresh
investigation based on recent progress in optimization.

In contrast with H∞- [2] and multidisk synthesis [3],
multi band design leads to an additional difficulty.
Closed loop stability with controller K has to be built
into a mathematical programming constraint. Two pos-
sibilities to model this constraint will be discussed,
for more details see [2, 3]. In the sequel each Twi→zi

is a smooth operator defined on the open domain
D ⊂ R(m2+k)×(p2+k) of kth order stabilizing controllers

K :=
[

AK BK

CK DK

]
, AK ∈ Rk×k

with values in the infinite dimensional space RH∞.

2 Multiband frequency domain design

We consider a plant P in state-space form

P (s) :

[
ẋ

y

]
=

[
A B

C D

] [
x

u

]
(2)

together with N concurring performance specifications,
represented as plants P i(s) in state-space form as

P i(s) :

[
ẋi

zi

yi

]
=

[
Ai Bi

1 Bi
2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22

] [
xi

wi

ui

]
, i = 1, . . . , N,(3)

where xi ∈ Rni

is the state of P i, ui ∈ Rm2 the con-
trol, wi ∈ Rmi

1 the vector of exogenous inputs, yi ∈ Rp2

the vector of measurements and zi ∈ Rpi
1 the ith perfor-

mance vector. Without loss of generality, it is assumed
that D = 0 and Di

22 = 0 for all i.

Multiband synthesis requires designing an output feed-
back controller ui = K(s)yi for the plants (3) with:

• Internal stability: The controller K stabilizes the
original plant P in closed-loop.
• Performance: Among all internally stabilizing con-

trollers,Kminimizes the worst case performance func-
tion f(K) = max

i=1,...,N
‖Twi→zi(K)‖Ii .

We assume that the controller K has the form:

K(s) = CK(sI −AK)−1BK + DK , AK ∈ Rk×k, (4)

where the case k = 0 of a static controller is included.
The synthesis problem may then be represented as

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K stabilizes (A,B,C), K ∈ D
(5)

Note that structural constraints on the controller are
easily handled by restricting K to suitable subspaces.

Remark 1 A difficulty in (5) is that D = {K :
K stabilizes (A,B,C)} is not a constraint in the sense
of mathematical programming. An element K on the
boundary ∂D is not a valid solution. Since an optimiza-
tion algorithm for (5) will converge to K ∈ ∂D, we have
to modify this constraint to avoid numerical failure.

3 Model I: distance to instability

In this section we present a first systematic way to build
a constraint which guarantees closed-loop stability. For
simplicity we work with static controllers. The case of
dynamic controllers simply follows from standard aug-
mentation of the plant [2].

We start by introducing a stabilizing channel s 7→
Tstab(K, s) := (sI − (A + BKC))−1 for (2). Then K
stabilizes P in closed-loop iff Tstab(K) is stable. The
stability domain D in (5) is then

D = {K ∈ Rm2×p2 : ‖ (sI − (A + BKC))−1 ‖∞ < +∞}.

We then replace D by the smaller closed set

Db = {K ∈ Rm2×p2 : ‖ (sI − (A + BKC))−1 ‖∞ ≤ b},

where b > 0 is some large constant, and consider the
following program:

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to g(K) := ‖Tstab(K)‖∞ ≤ b
(6)

The distance to instability of a stable matrix A is defined
as:

β(A) = inf{‖X‖F : A + X instable}.

It is easy to see that

β(A) ≥ ε ⇔ ‖(sI −A)−1‖∞ ≤ 1/ε.
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That means, our natural choice is b = 1/β.

How do we solve program (6)b numerically? We consider
the homotopy program

min
K∈Rm2×p2

max
{

max
i=1,...,N

‖Twi→zi(K)‖Ii
, µ‖Tstab(K)‖∞

}
= min

K
max {f(K), µ g(K)} =: min

K
fµ(K) . (7)

where µ > 0 is called the homotopy parameter.

Lemma 2 Let Kµ be a local minimum of (7)µ which is
non-degenerate in the sense that it is neither a critical
point of f alone, nor a critical point of g alone. Then Kµ

is a Karush-Kuhn-Tucker point of program (6)b(µ) with
b(µ) = g(Kµ) = f(Kµ)/µ.

PROOF. As Kµ is non degenerate, the necessary opti-
mality conditions for (7)µ give 0 < tµ < 1 such that

0 ∈ tµ∂f(Kµ)+(1−tµ)µ∂g(Kµ) and f(Kµ) = µg(Kµ).

Let us now write the Karush-Kuhn-Tucker conditions
for (6)b: There exists a Lagrange multiplier λb such that

0 ∈ ∂f(Kb) + λb∂g(Kb), g(Kb)− b ≤ 0,

λb ≥ 0, λb(g(Kb)− b) = 0.

We see that the solution Kµ of (7)µ solves (6)b if

b(µ) = g(Kµ), λb(µ) = ((1− tµ)µ) /tµ.

This proves the claim. 2

Lemma 3 Let Kb be a local minimum of program (6)b

which is non degenerate in the sense that it is not a
Karush-Kuhn-Tucker point of f alone. Then Kb is a crit-
ical point of program (7)µ(b) with µ(b) = f(Kb)/g(Kb).

PROOF. We compare the necessary optimality condi-
tions. Reading the formulas backwards, we get

µ(b) = f(Kb)/g(Kb).

Then reading λb = (1− tµ)µ/tµ backwards leads to

tµ(b) =
µ(b)

λb + µ(b)
=

f(Kb)
f(Kb) + λbg(Kb)

∈ (0, 1). 2

Remark 4 There is a local one-to-one correspondence
between (6)b and (7)µ in the sense that Kb = Kµ(b) and
Kµ = Kb(µ). To find Kb for b = β−1 it suffices to find

µ(b) = µ(β−1) and solve (7)µ(β−1). Using (7)µ to solve
model (6)b is basically a homotopy method, because the
parameter b(µ) is gradually driven toward its final value
b by adjusting µ. Notice that the problem may become ill-
conditioned when b is chosen too small.

4 Model II: shifting poles

Let us consider a second possibility to fix a closed sub-
set of D based on the shifted H∞ norm, [7, p. 100]:
‖H(·)‖∞,α = ‖H(· + α)‖∞. For α < 0, condition
‖H‖∞,α < +∞ guarantees that the poles of H(s) lie
to the left of <s = α < 0. That means that for every
α < 0, the closure Dα

of the open domain

Dα = {K ∈ Rm2×p2 : ‖ (sI − (A + BKC))−1 ‖∞,α < +∞}

is a tractable constraint set, because Dα ⊂ D. Indeed,
elements K ∈ ∂Dα still have <λ ≤ α < 0 for the poles λ
of A + BKC, hence these K are closed-loop stabilizing.
This suggests the optimization program

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K ∈ Dα
(8)

Having prepared its rationale, let us discuss an algorithm
for (8)α. The situation is slightly more complicated than
for model I, becauseDα

is not easily represented as a con-
straint set in the sense of nonlinear programming. What
we have, though, is a barrier function for Dα. Putting

hα(K) = ‖Tstab(K)‖∞,α,

where Tstab(s) := (sI − (A + BKC))−1 is the stabilizing
channel for plant P , we see that

Dα = {K ∈ Rm2×p2 : hα(K) < +∞}.

We may then consider the following family of programs

min
K∈Rm2×p2

max {f(K), µ hα(K)} =: min
K∈Rm2×p2

fµ,α(K), (9)

where fµ,a(K) is the barrier function. We link (8) to (9):

Lemma 5 Let Kµ,α be a local minimum of (9)µ,α which
is non degenerate in the sense that it is neither a critical
point of f alone, nor a critical point of hα alone. Let Kα

be an accumulation point of the sequence Kµ,α as µ→ 0.
Suppose minω∈R+ σ(jωI − (ABKaC − αI)) is attained
on a finite set of frequencies. Then Kα is a critical point
of program (8)α.

PROOF. 1) The KKT conditions for (8)α at Kα give a
subgradient G ∈ ∂f(Kα) such that −G is in the Clarke
normal cone NDα(Kα) of Dα

at Kα; cf. [5].
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2) The KKT conditions for (9)µ,α say that there exists
0 < tµ,α < 1 such that f(Kµ,α) = µhα(Kµ,α) and

0 ∈ tµ,α∂f(Kµ,α) + (1− tµ,α)µ∂hα(Kµ,α) . (10)

We introduce the level sets

Dα(µ) = {K ∈ Rm2×p2 : hα(K) ≤ hα(Kµ,α)}.

There are now two cases. Either hα(Kµ,α)→∞ as µ→
0, or there exists a subsequence for which these values are
bounded. In the latter case, f(Kµ,α) = µhα(Kµ,α) gives
f(Kµ,α) → 0, hence f(Kα) = 0. This case is excluded,
because here Kα is a global minimum of f alone.

3) Now assume that hα(Kµ,α)→∞, so that the Dα(µ)
grow as µ → 0. Then ∪µ>0Dα(µ) = Dα. By (10) there
exists a subgradient Gµ,α ∈ ∂f(Kµ,α) such that

−(1− tµ,α)µGµ,α/tµ,α ∈ ∂hα(Kµ,α).

In other words, the negative subgradient −Gµ,α of f at
Kµ,α is a direction in the normal cone NDα(µ)(Kµ,α) to
the level setDα(µ) atKµ,α. Passing to a subsequence, we
may assume Gµ,α → Gα. By upper semicontinuity of the
Clarke subdifferential [8], Gα ∈ ∂f(Kα). We now show
that Gα is in the normal cone NDα(Kα), because then
the necessary optimality condition in step 1) is satisfied.

4) Let us introduce the following function

φα(K) =

{
−hα(K)−2 if hα(K) <∞
0 else

Then Dα = {K : φα(K) < 0}, and Dα(µ) = {K :
φα(K) ≤ − 1

hα(Kµ,α)2 }. Notice, however, that Dα 6= {K :
φα(K) ≤ 0}. That means, we cannot directly conclude
via upper semicontinuity of the Clarke subdifferential of
φα, as we did for ∂f . This complicates this proof.

We show that φα is locally Lipschitz. Since hα is locally
Lipschitz, this is true inside Dα. Only points K ∈ ∂Dα

might cause problems. But

φα(K) = −hα(K)−2

= −1/max
ω∈R+

σ
(
(jωI −A−BKC + αI)−1

)2

= − min
ω∈R+

σ (jωI −A−BKC + αI)2

and this is locally Lipschitz, because for fixed ω, the
minimum eigenvalue of an Hermitian matrix is locally
Lipschitz. This also shows that φα has value 0 outside
Dα

, which is therefore not the level set of φα at level 0.

Using upper semi-continuity of the Clarke subdifferential
lim supµ→0 ∂φα(Kµ,α) ⊂ ∂φα(Kα) implies

lim sup
µ→0

NDα(µ)(Kµ,α) ⊂ Λα(Kα),

where Λα(K) is the convex cone generated by the com-
pact convex set ∂φα(K), because the normal cone to
Dα(µ) is generated by the subdifferential of φα at Kµ,α.
Recall the difficulty: our proof is not finished because
Λα(Kα) is not identical with the Clarke normal cone
NDα(Kα) to Dα

at Kα.

Let us show that Λα(Kα) is pointed, that is, Λα(Kα) ∩
−Λα(Kα) = {0}. This follows as soon as we show that
±G ∈ ∂φα(Kα) implies G = 0.

By hypothesis, the minimum singular value at Kα is
attained on a finite set of frequencies. This implies that
φα is Clarke regular at Kα. Hence the Clarke directional
derivative coincides with the Dini directional derivative:

∂φα(Kα) = {G : ∀D 〈G, D〉 ≤ φ′α(Kα;D) =
lim inf
t→0+

t−1 (φα(Kα + tD)− φα(Kα))}.

But φα(Kα) = 0 so for fixed ε > 0 we can find tε > 0
such that 〈G, D〉 ≤ t−1

ε φα(Kα + tεD) + ε ≤ ε, the latter
since φα ≤ 0. We have shown 〈G, D〉 ≤ ε, and since ε
was arbitrary, we have 〈G, D〉 ≤ 0. Now we use the fact
that −G is also a subgradient. Repeating the argument
gives −〈G, D〉 ≤ 0. Altogether, 〈G, D〉 = 0, and since D
was arbitrary, G = 0.

5) Having shown that Λα(Kα) is pointed, it follows
that the convex hull of lim sup

µ→0
NDα(µ)(Kµ,α) is pointed,

because by 4) it is contained in Λα(Kα). Now we use
Proposition 4.1 and Theorem 2.3 in [9] to deduce that
lim sup

µ→0
NDα(µ)(Kµ,α) ⊂ NDα(Kα). In the terminology

of that paper, this is referred to as normal convergence.
That completes the proof. 2

Remark 6 1) The above reasoning carries over to dy-
namic controllers via the augmentation [2]. 2) fµ,α in (9)
and fµ in (7) have almost identical structure, so the al-
gorithms for both models are similar. 3) Normal conver-
gence defined in [9] is a suitable concept to describe ap-
proximation of mathematical programs. If the constraint
set is represented as the level set of a locally Lipschitz op-
erator, normal convergence is satisfied. However, in our
case, the limiting set Dα

is not a level set, which com-
plicates the situation. Academic counterexamples where
normal convergence fails can be constructed; see [9].
The method of this section is a barrier method, because α
is fixed from start, while µ is driven to 0 to give conver-
gence. So µ plays a role similar to the barrier parameter
in interior-point methods. As our experiments show, this
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requires a final µ � −α, so ill-conditioning may occur
only when α is chosen too small.

5 Algorithms for multiband control design

In this section we develop tools and present algorithms
to solve models I via (7)µ and II via (9)µ,α.

5.1 Subdifferential of the barrier function

Computation of the Clarke subdifferential of fµ and fµ,α

is central for our approach. The foundations for the re-
sults here are given in [2] for the H∞ norm and in [3] for
multi-disk synthesis. In order to unify the presentation,
we introduce a common terminology for both cases. For
fµ at fixed µ > 0, we introduce a new closed-loop trans-
fer channel:

TwN+1→zN+1(K) = µTstab(K),

so that fµ(K) = maxi=1,...,N+1 ‖Twi→zi(K)‖Ii when we
set IN+1 = [0,∞]. Similarly, for fµ,α at fixed µ > 0,
α < 0, we introduce the (N + 1)st channel in the form

TwN+1→zN+1(K, s) = µTstab(K, s + α),

so that again fµ,α(K) = maxi=1,...,N+1 ‖Twi→zi(K)‖Ii

with IN+1 = [0,∞].

As formulas for the Clarke subdifferential of fµ,α are
easily inferred from those of fµ, we will restrict the dis-
cussion to fµ. We introduce the simplifying closed-loop
notation in state space

Ai(K) := Ai + Bi
2KCi

2, Bi(K) := Bi
1 + Bi

2KDi
21,

Ci(K) := Ci
1 + Di

12KCi
2,Di(K) := Di

11 + Di
12KDi

21 ,
(11)

and in frequency domain[
Twi→zi(K, s) Gi

12(K, s)
Gi

21(K, s) ?

]
:=

[
Ci(K)
Ci

2

] (
sI −Ai(K)

)−1
.

[Bi(K) Bi
2 ] +

[
Di(K) Di

12
Di

21 ?

]
.

Here, for i = N + 1, we define the plant

PN+1(s) :

[
ẋN+1

zN+1

yN+1

]
=

[
A I B
I 0 0
C 0 0

] [
xN+1

wN+1

uN+1

]
, (12)

where xN+1 ∈ Rn, n is the dimension of A, uN+1 ∈ Rm2 ,
wN+1 ∈ Rn, yN+1 ∈ Rp2 , and zN+1 ∈ Rn.

Let us introduce the notion of active frequencies. For a
given controller K, active channels or specifications are

obtained through the index set Iµ(K)

{i ∈ {1, . . . , N + 1} : ‖Twi→zi(K)‖Ii
= fµ(K)}, (13)

Moreover, for each i ∈ Iµ(K), we consider the set of
active frequencies

Ωi
µ(K) = {ω ∈ Ii : σ (Twi→zi(K, jω)) = fµ(K)}.

We assume that Ωi
µ(K) is a finite set, indexed as

Ωi
µ(K) = {ωi

ν : ν = 1, . . . , pi}, i ∈ Iµ(K). (14)

The set of all active frequencies is Ωµ(K). Now:

Theorem 7 Assume K stabilizes PN+1 in (12), i.e.,
K ∈ D. With (13) and (14), let the columns of
Qi

ν form an orthonormal basis of the eigenspace of
Twi→zi(K, jωi

ν)Twi→zi(K, jωi
ν)H associated with the

largest eigenvalue σ(Twi→zi(K, jωi
ν))2. Then, the Clarke

subdifferential of fµ at K is the compact and convex set

∂fµ(K) = {ΦY : Y := (Y 1
1 , . . . , Y 1

p1 , . . . , Y
q
1 , . . . , Y q

pq ) ∈ Bp}

where

Bp = {(Yi) : Yi = Y H
i , Yi � 0,

∑
i

Tr(Yi) = 1},

and p :=
∑

i∈Iµ(K) pi, q the number of elements in Iµ(K),

ΦY = fµ(K)−1
∑

i∈Iµ(K)

∑
ν=1,...,pi

<
{
Gi

21(K, jωi
ν)×

Twi→zi(K, jωi
ν)HQi

νY i
ν (Qi

ν)HGi
12(K, jωi

ν)
}T

. (15)

The formula also applies to fµ,α when suitably adapted.

PROOF. The proof is based on the representation of
the Clarke subdifferential of finite maximum functions
[8], and is omitted for brevity. The reader is referred
to [2, 3, 14] for related cases. 2

5.2 Solving the subproblem

We describe an extension of the nonsmooth technique
developed in [1,2] for H∞ synthesis, and in [3] for multi-
disk problems. The method is convergent and has been
tested on a variety of sizable problems.

As before, we consider minimization of fµ for fixed µ,
and minimization of fµ,α for fixed µ, α. We define

fµ(K, ω) := max
i=1,...,N+1

{σ (Twi→zi(K, jω)) : ω ∈ Ii} ,

5



so that fµ(K) = maxω∈[0,∞] fµ(K, ω). Minimizing fµ

is then a semi-infinite program for the family fµ(·, ω).
Clearly, fµ(K, ω) ≤ fµ(K) for ω ∈ [0,∞] and fµ(K, ω) =
fµ(K) for ω ∈ Ωµ(K), the set of active frequencies. By
Theorem 7, the subdifferential of fµ(K, ω) is the set of
subgradients

ΦY,ω := fµ(K, ω)−1
∑

i∈Iω(K)

<
{
Gi

21(K, jω)×

Twi→zi(K, jω)HQi
ωY i

ω(Qi
ω)HGi

12(K, jω)
}T

,

where Iω(K) is the index set of active models at fre-
quency ω:

{i ∈ {1, . . . , N+1} : ω ∈ Ii, σ(Twi→zi(K, jω)) = fµ(K, ω)}.

Here the columns of the matrix Qi
ω form an orthonormal

basis of the eigenspace of Twi→zi(K, jω)Twi→zi(K, jω)H

associated with its largest eigenvalue, and∑
i∈Iω(K)

TrY i
ω = 1 , Y i

ω = (Y i
ω)H � 0 .

An important feature of our technique is to allow
finite extensions of the set of active frequencies:
Ωe,µ(K) ⊇ Ωµ(K). In section 5.3 we show how Ωe,µ(K)
is constructed. The idea is as follows: At the current K
only a finite set of fµ(·, ω), ω ∈ Ωµ(K) is active. There-
fore, minimizing fµ in a neighborhood of K is reduced to
minimizing this finite family. The subgradients of f at
K only depend on these active fµ(·, ω), ω ∈ Ωµ(K). As
we move away from the current K to a nearby K′, other
functions fµ(K′, ω′), ω′ 6∈ Ωµ(K), will become active,
of course. If this happens too early, the descent step
proposed by the local model will be poor. By choosing
an enlarged set Ωe,µ(K), including some frequencies ω′

outside Ωµ(K), we render the step from K to the new
K′ more robust.

For any such finite extension Ωe,µ(K), and for fixed δ >
0, we introduce a corresponding optimality function

θe,µ(K) := inf
H∈Rm2×p2

sup
ω∈Ωe,µ(K)

sup∑
i∈Iω(K)

Tr Y i
ω=1, Y i

ω�0

−fµ(K) + fµ(K, ω) + 〈ΦY,ω,H〉+ 1
2
δ‖H‖2F . (16)

When Ωe,µ(K) = Ωµ(K), we write θµ(K). Since Ωµ(K) ⊂
Ωe,µ(K), we have θµ(K) ≤ θe,µ(K) for any extensions.
θµ(K) and θe,µ(K) are called optimality functions be-
cause they share the following property: θe,µ(K) ≤ 0 for
all K, and θe,µ(K) = 0 implies that K is a critical point
of fµ [2]. Similar optimality functions have been used in
the work of E. Polak, see [15–17]. They can be used to
generate descent steps. In order to do this, we show that
optimality function (16) has a tractable dual form.

Proposition 8 The dual formula for θe,µ(K) is:

θe,µ(K) = sup∑
ω∈Ωe,µ(K)

τω=1, τω≥0

sup∑
i∈Iω(K)

Tr Y i
ω=1, Y i

ω�0∑
ω∈Ωe,µ(K)

τω(fµ(K, ω)− fµ(K))− 1
2δ
‖

∑
ω∈Ωe,µ(K)

τωΦY,ω‖2F .(17)

The associated optimal descent direction in the controller
space is given as

H(K) := −1
δ

∑
ω∈Ωe,µ(K)

τωΦY,ω . (18)

PROOF. The proof is essentially covered by the results
in [3] and is omitted for brevity. 2

Remark 9 The appealing feature of the dual program
(17) is that it is a small size SDP, or even a convex
QP when singular values are simple. It is worth noticing
that band restricted norms ‖ · ‖Ii

and peak frequencies
ω ∈ Ωµ(K) are easily computed via an extension of the
bisection algorithm in [6].

Proposition 8 suggests the following descent scheme for
the subproblems for given K and µ respectively µ, α .

Nonsmooth descent algorithm for the subproblem

• Fix δ > 0, 0 < ϑ < 1, 0 < ρ < 1.
1. Initialization. Find a controller K which stabilizes

the plant P in (2).
2. Generate frequencies. Given the current K, com-

pute fµ(K) and obtain active frequencies Ωµ(K). Se-
lect a finite enriched set of frequencies Ωe,µ(K) con-
taining Ωµ(K).

3. Descent direction. Compute θe,µ(K) and the solu-
tion (τ, Y ) of SDP or convex QP (17). If θe,µ(K) = 0,
stop, because 0 ∈ ∂fµ(K). Otherwise compute descent
direction H(K) given in (18).

4. Line search. Find largest t = ϑk such that fµ(K +
t H(K)) ≤ fµ(K)+ tρθµ(K) and such that K+ tH(K)
remains stabilizing.

5. Step. Replace K by K + tH(K), increase iteration
counter by one, and go back to step 2.

Remark 10 Results in [2, 3] can be used to prove con-
vergence to a critical point 0 ∈ ∂fµ(Kµ) for fixed µ, start-
ing from an arbitrary K ∈ D. Convergence of the overall
scheme follows when we combine this with Lemmas 2,3
and 5. The subproblems become ill-conditioned when µ
gets too small, shown by a large number of iterations or
even failure to reach criticality. This can be avoided by
choosing β (in model I) and α (in model II) moderately
small.
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5.3 Enriched sets of frequencies

Choosing an extended set of frequencies Ωe,µ in step 2
is a key ingredient for the success of our technique and
is beneficial mainly for two reasons:

- It renders the algorithm less dependent on the accu-
racy within which peak frequencies in Ωµ are com-
puted. A consequence is that the computed search di-
rection behaves more smoothly.

- It captures more information on the frequency re-
sponses ω 7→ σ (Twi→zi(K, jω)) on their associated
intervals Ii. This leads to better step lengths.

5.4 Combined algorithm

We assemble the elements of the previous sections into
an algorithm. Here a difference between models (7) and
(9) occurs. In (7)b we have to drive µ to the specific
value b(µ) = β−1, where β > 0 is our prior threshold for
the distance to instability (homotopy method). In model
(9)α, we fix threshold α < 0 for the poles λ in closed loop,
that is <λ ≤ α < 0, but drive µ to 0 (barrier method). In
both cases we start with a moderate size µ to solve (7)µ

respectively (9)µ,α. Then we update µ to µ+ and use the
solution Kµ,α as initial for the next subproblem. Differ-
ent strategies to steer the parameter µ are discussed in
the experimental section. We also discuss to what preci-
sion the early subproblems need to be solved, and how
a successive refinement should be organized.

6 Numerical experiments

We consider the double integrator G(s) = s−2, one of
the most fundamental plants in control. Multiband de-
sign specifications are borrowed from [19] and involve
sensitivity S := (I + GK)−1 and complementary sensi-
tivity T := GK(I + GK)−1. Multiband constraints are

• disturbance rejection and tracking

|S(jω)| ≤ 0.85, for ω ∈ I1 := [0, 0.5], rad./s

• gain-phase margins

|S(jω)| ≤ 1.30, for ω ∈ I2 := [0.5, 2], rad./s

• bandwidth

|T (jω)| ≤ 0.707, for ω ∈ I3 := [2, 4], rad./s

• roll-off

|w(jω) T (jω)| ≤ 1.0, for ω ∈ I4 := [4, ∞], rad./s,

where w(s) is the weighing function

w(s) :=
0.2634s2 + 1.659s + 5.333

0.0001s2 + 0.014s + 1
.

This problem is cast as a multiband H∞ synthesis prob-
lem in the form (5):

min{f(K) : K stabilizes G(s)}

with the definition f(K) :=

max
{

1
0.85
‖S‖I1 ,

1
1.30
‖S‖I2 ,

1
0.707

‖T‖I3 , ‖w(s)T‖I4

}
.

As explained in section 2, the stability constraint could
be represented either as distance to instability con-
straint, using the homotopy function:

minimize fµ(K) := max {f(K), µ‖Tstab‖∞}

(model I) where µ is the homotopy parameter, and where
Tstab(K, s) = (sI−(A+BKC))−1 is the stabilizing chan-
nel for the plant, or as a barrier approach (model II),
where

minimize fµ,α(K) := max {f(K), µ‖Tstab‖∞,α}

for a threshold α < 0, restricting poles λ of the closed-
loop system to <λ ≤ α < 0, and for the barrier parame-
ter µ > 0. In particular, it will be interesting to see the
relationship between β and −α.

6.1 Model I: numerical difficulties with a single solve

To emphasize numerical difficulties with small homotopy
parameters we report experiments for various values of
β, assuming that the corresponding µ-values are known.
All experiments are started from the same stabilizing K
of order k = 1.

The experiment confirms that it is not a good idea to
solve program (7) directly for the ”correct” value µβ

giving b(µβ) = β−1 = b, because numerical difficulties
arise.

Column 2 in Table 1 gives those values µ = µβ needed
to achieve the distance to instability β in column 1. Col-
umn 3 gives the achieved multiband performances. Col-
umn 4 gives the number of inner iterations to reach con-
vergence. Underlined values give the final (max) multi-
band performance showing that adequate performance
was not achieved. The conclusion of this first experiment
is that a homotopy search in the parameter µ is required.
Steering µ directly or too quickly to the correct value µβ

causes failure.
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Table 1
Numerical difficulties when solving directly for µβ , ∗ failure
to achieve descent

β µ multiband performance iter

0.68 10 0.09 0.42 1.43 1.44 26

0.35 1 0.17 1.06 1.07 2.84 32∗

0.07 0.01 1.44 1.17 0.25 1.44 > 200

1.3e−4 1e−3 0.20 0.51 1.13 7.57 5∗

6.2 Design with algorithms I and II

The above difficulties can be avoided by decreasing µ
gradually. In Table 2 we used the update µ← µ/3. Our
stopping test for the subproblems uses the criticality
measure θe,µ(K) ≤ 0 in (17) and is defined as θe,µ(K) >
−εs with the updating rule εs ← max(1e−4, εs/2) and
the initialization εs = 10. In this form, we require less
computations in the early iterations, while accuracy is
gradually increased as we get closer to a local solution.

Design with algorithm I. According to section 3, we have
set b to a large value, b = 105, which corresponds to
the distance to instability β = 10−5. The parameter µ
is decreased as long as ‖ (sI − (A + BKC))−1 ‖∞ < b.
Results are given in Table 2.

Design with algorithm II. Here the strategy is different as
we require a minimum stability degree using the shifted
H∞ norm in section 4. Based on the idea −α ≈ β, we set
α = −1e−5. The barrier parameter µ is driven to zero
with the same updating rule as long as µ > 1e−8. Both
algorithms I and II are initialized with the same stabiliz-
ing controller, see Table 2. ‘(α, β)’ gives initial and final
closed-loop spectral abscissa and distance to instability.
The last column shows the achieved multiband perfor-
mances. ‘µ’ gives the final values of the homotopy respec-
tively barrier parameter, ‘iter’ the total number of inner
iterations to meet our termination criterion. Controllers
obtained with algorithms I and II both meet all design
requirements since all band restricted performances are
below unity. This represents 20% improvements over the
results in [19]. It is also instructive to see both tech-
niques terminate at a nonsmooth local minimum where
3 among the 4 band restricted performances coincide.

Table 2
Designs with algorithm models I and II. In model I the value
β = 10−5 is fixed, in model II the value <λ = −α = 10−5 is
imposed.

(α, β) multiband performance

init (−0.76, 0.26) 0.091 0.28 2.41 42.37

mod. I (−6.322e−5, 1e−5) 0.84 0.84 0.31 0.84

mod. II (−1.02e−5, 7.32e−8) 0.84 0.84 0.31 0.84

7 Conclusion

Multiband H∞ synthesis is a practically important prob-
lem for which convincing approaches are lacking. We
have presented a new approach to this difficult problem
using methods from nonsmooth optimization.
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