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Alternating projections invented by Hermann Amandus Schwarz in
1869

H. A. Schwarz. Über einen Grenz-
übergang durch alternirendes
Verfahren.

Vierteljahresschrift der Naturfor-
schenden Gesellschaft in Zürich,
15(1870), pp. 272–286.

Used to solve Dirichlet problem rigorously

First domain decomposition method ever

Modern re-interpretation by P.-L. Lions 1978, 1988-89.



Method erroneously attributed to J. von Neumann :

S.L. Sobolev. L’algorithme de Schwarz dans la théorie de l’élasticité.
Comptes Rendus de l’Académie des Sciences de l’URSS, IV :243–246,
1936.

R. Courant, D. Hilbert. Verfahren der mathematischen Physik, Band 2
1930s.

J. von Neumann. Functional Operators II. Lecture Notes 1950

Presents no citations

Claims that original version in 1933 has it already



Convex Alternating Projections

Schwarz, Sobolev, v. Neumann : Subspaces
L.M. Bregman : Weak convergence for convex sets in Hilbert
space. 1965
H.H. Bauschke : Convex case essentially settled 1993.
H. Hundal. Norm convergence may fail, 2002.
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Given : closed sets A,B in Rn

A ∩ B 6= ∅

Want : solution x of feasibility problem

x ∈ A ∩ B

Method :

b1 ∈ PB(a1), a2 ∈ PA(b1), b2 ∈ PB(a2), a3 ∈ PA(b2), . . .

or

a1
PB−→ b1

PA−→ a2
PB−→ b2

PA−→ . . .



Non-convex Alternating Projections :

Are there applications ?

Conditions for local convergence ?

May convergence fail ?



Failure of convergence



Theorem
(Combettes, Trussell 1990). Let A,B be closed. Suppose the
sequence of alternating projections ak , bk is bounded and satisfies
ak − bk → 0. Then the set of accumulation points of ak , bk is
either singleton or a compact continuum. Every accumulation point
is a solution of the feasibility problem.

Theorem
(Bauschke, Noll 2013). The case of a non-trivial compact
continuum may indeed occur.



A = {1st, 3rd, 5th, 7th, . . .} ∪ C , B = {2nd, 4th, 6th, . . .} ∪ C .

A ∩ B = C = {z : |z | = 1}



A = {(cos t, sin t, s) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 2π}
B = {(cos t(1 + e−t), sin t(1 + e−t), e−2t) : 0 ≤ t ≤ ∞}

Bauschke, Noll (2014, Archiv der Mathematik)



Are there applications ?



Non-convex Alternating Projections used in :

Color plane interpolation (de-mosaicking)

De-noising of time-series (Cadzow’s basic algorithm, Singular
Spectrum Analysis)

Inverse eigenvalue problems

Pole placement (control)

Synthesis of low-order feedback controllers (control)

Road profile design (western Canada)

Recovery of lost image blocks in JPEG and MPEG images

Sparse affine feasibility (for error correction in linear codes)

Packings in Grassmannian manifolds (wireless communication)

EM-algorithm for Gaussian laws

Phase retrieval



Local convergence



Theorem

(A.S. Lewis, J. Malick 2008). Let A,B be C 2-manifolds in Rn

intersecting transversally at x∗ ∈ A ∩ B. Then there exists a
neighborhood U of x∗ such that every alternating sequence ak , bk
which enters U converges to some a∗ ∈ A ∩ B with R-linear speed.

b x∗

A

B

Transversality

TA(x
∗) + TB(x

∗) = R
n



Theorem
(A.S. Lewis, R. Luke, J. Malick 2009). Suppose

1 There exists x∗ ∈ A ∩ B such that NA(x∗) ∩ −NB(x∗) = {0}
(replaces transversality).

2 B is super-regular (replaces convexity).

Then there exists a neighborhood U of x∗ such that every alternating
sequence ak , bk which enters U converges to some a∗ ∈ A ∩ B with
R-linear speed.

A

B

NB(x
∗)

NA(x
∗)

b

NB(x
∗)

NA(x
∗)

b



A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

Transversality too restrictive. Two non-parallel lines in R2 intersect
transversally, but no longer in R3

Same for NA(x∗) ∩ −NB(x∗) ⊂ {0}.

Need an additional regularity hypothesis called super-regularity.



convex prox-regular super-regular



convex prox-regular super-regular



H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.
Set-valued Var. Anal.

A

B

NB(x
∗)
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∗)

NA(x
∗) ∩ −NB(x

∗)

b



Use restricted normal cones instead :

NB
A (x∗) = normals to A at x∗ pointing into B

Transversality at x∗ becomes :

NB
A (x∗) ∩ −NA

B (x∗) ⊂ {0}

Works better, but still not good enough.

Definition
(Noll, Rondepierre 2013). Transversality is when α stays away from 0◦ in
neighborhood of x∗.
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What happens when the intersection is tangentiel ?

• Is failure of convergence due to the lack of regularity ?

• or is it because the intersection is (too) tangential ?



.

α ≈ 180◦ (transversal) intersection tangential

Regularity missing Regularity OK



How to deal with tangential intersection ?



Noll, Rondepierre 2013 :
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Tangential intersection :

α

b

a
a+

x∗
r

α = ∠(a − b, a+ − b) and r = ‖b − a+‖
both shrink to 0 as we approach x∗



Definition
(Noll, Rondepierre 2013). The sets A,B satisfy the angle condition at
x∗ ∈ A ∩ B if there exists γ > 0, ω ∈ [0, 2) and a neighborhood U of x∗

such that for every building block a PB−→ b PA−→ a+ in U we have

sin2 α

rω
≥ γ

Tangential intersection means α and r both shrink to 0.

Angle condition means they shrink in controlled fashion. Angle does
not shrink too fast.

Special case ω = 0 gives back transversality (angle does not shrink,
but distance r does).



Theorem
(Noll, Rondepierre 2013). Suppose there exists x∗ ∈ A ∩ B such
that

1 A,B satisfy the ω-angle condition at x∗.
2 B is ω/2-Hölder regular at x∗ with respect to A.

Then there exists a neighborhood U of x∗ such that every
alternating sequence ak , bk which enters U converges to some point
a∗ ∈ A ∩ B. The speed of convergence is

‖ak − a∗‖ = O
(
k−

2−ω
2ω

)
, ‖bk − a∗‖ = O

(
k−

2−ω
2ω

)

Special case ω = 0 gives R-linear convergence



Theorem
Noll, Rondepierre 2013). Suppose A,B are sub-analytic sets and
x∗ ∈ A ∩ B. Then there exists ω ∈ [0, 2) such that A,B intersect
with ω-angle condition at x∗.

Semi-analytic set :

A =
N⋃

i=1

M⋂
j=1

{x ∈ Rn : φij(x) = 0, ψij(x) > 0}

with real-analytic functions φij , ψij .

A sub-analytic ⇐⇒ ∀a ∈ A ∃r > 0 ∃A bounded semi-analytic
A ∩ B(a, r) = {x : (x , y) ∈ A}



How about Hölder regularity ?
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here it fails
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Consequence : Our notion of Hölder regularity still in business for
packman. Can enter into corners.



Corollary
(Noll, Rondepierre 2013). Suppose A,B are sub-analytic, and B is
Hölder regular with respect to A. Suppose the alternating sequence
ak , bk is bounded and satisfies ak − bk → 0. Then there exists
ω ∈ [0, 2) such that it converges to a point a∗ ∈ A ∩ B with speed

‖ak − a∗‖ = O
(
k−

2−ω
2ω

)
, ‖bk − a∗‖ = O

(
k−

2−ω
2ω

)



Application : Phase retrieval



Phase retrieval
Reconstruct unknown signal x(t), t = 0, . . . ,N − 1 from known
Fourier amplitude a(f ) = |x̂(f )|, f = 0, . . . ,N − 1.

Retrieve unknown phase x̂(f )/|x̂(f )|, hence the name.
Have to add prior information like known support of x in time
domain : x(t) = 0 for t 6∈ S .
Or additional measurements (Fourier amplitude from a second
Fourier plane ; Gerchberg-Saxton 1972).



Phase retrieval in interferometry (optics) :

First mentioned in a letter by Lord Rayleigh to A. Michelson in
1892.
Impossibility to solve without prior information clearly stated.
First numerical scheme : Gerchberg-Saxton algorithm 1972

Lord Rayleigh
(early 1900s)

A. Michelson
(1907)



Some history



Max von Laue (1912) proposes to use X-rays to visualise crystal
structure via diffraction.

David Sayre (1952) shows that non-periodic x can in principle also
be retrieved from |x̂ | if a = |x̂ | is sampled twice the Nyquist rate in
every dimension.

• Deplores lack of methods to do it.
• Hence participates in development of 1st fortran compiler.

R.W. Gerchberg - O.W. Saxton (1972). 1st algorithm to retrieve x
from |x̂ |.

J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the
methodology of X-ray crystallography to allow imaging of
micrometre-sized non-crystalline specimens, Nature 400, 342-344,
1999. 45 years later Sayre is back !

2014. Individual proteins and nano-crystals can be visualized by CDI.



David Sayre
(1924–2012)

Crystallographer who pioneered methods of X-ray imaging and modern computing.

David Sayre, who died on 23 February, 
was a pioneer in crystallography and 
diffraction imaging, a visionary in 

X-ray microscopy and an architect of modern 
computing. A superb scientist, deep thinker 
and wonderful mentor, he could have 
built a scientific empire. But that was 
not his style. He was driven by the 
desire to do pure and original science. 

Sayre was born on 2 March 1924 in 
New York. His father was an organic 
chemist whose ancestors helped to 
found the town of Southampton, 
New York, in the sixteenth century. 
His mother was the daughter of  
Jewish immigrants. Sayre was edu-
cated at Yale University in New Haven, 
Connecticut, graduating in 1943 at the 
age of 19 with a bachelor’s degree in 
physics. The Second World War was 
at its height, so Sayre worked on radar 
at the Radiation Laboratory at the  
Massachusetts Institute of Technology 
in Cambridge.

In 1946, guessing biology would be 
the next exciting field, Sayre became a 
graduate student in biology at the Uni-
versity of Pennsylvania in Philadelphia  
and then at Harvard University in  
Cambridge. He was not initially inter-
ested in what he was learning, but in 
1947 Sayre came across an article about 
X-ray crystallography that changed his 
life. He joined Raymond Pepinsky’s 
crystallography laboratory at Auburn 
University in Alabama, where he used 
a mathematical operation known as the 
Fourier transform to analyse the structures  
of crystals probed with X-ray beams. 

That  year,  Sayre married Anne 
Colquhoun, a fiction writer. She took a 
teaching position at the Tuskegee Institute, 
but her involvement in the school, which 
enrolled black students, was controversial  
in the Deep South at that time, and 
the Sayres soon left. They moved to Oxford, 
UK, where Sayre completed his PhD in the 
lab of Dorothy Hodgkin in 1951. 

Sayre produced his most profound papers 
during this period, solving the ‘phase 
problem’ in crystallography — the loss of 
phase information in the measurement of 
diffraction intensity. In 1952, he proposed 
atomicity — the fact that atoms are small and 
discrete points relative to the space between 
them — as a constraint for determining the 
phases of crystals of small molecules, giving 

rise to what is now called Sayre’s equation. 
Atomicity is the key concept behind the 
direct methods used for crystallography 
today, although Sayre did not share the 
1985 chemistry Nobel prize awarded for 

it. In 1952, Sayre also realized that, even 
in the absence of regular crystal structure, 
information could be gleaned from the 
fine sampling of diffraction patterns. 

Sayre saw early on that solving complex 
crystal structures would require substantial 
computational resources. In 1956 he joined 
IBM’s Watson Research Center in New York, 
and eventually became assistant manager  
of the team that wrote the original 
FORTRAN compiler. He became corporate 
director of programming, and later head of 
the IBM programming research group. In 
1969, he and his team proved the efficiency 
of virtual memory in computing. 

In 1972–73, Sayre took a sabbatical, 
returning to Hodgkin’s lab and to crystal-
lography. It was during this time that one of 
us (J.K.) met the Sayres, forming a lasting 
friendship and collaboration. Anne Sayre 
also wrote the influential book Rosalind 

Franklin and DNA, about the outstanding 
crystallographer and Sayre family friend 
who had died of cancer at an early age.

After returning to IBM, Sayre became 
interested in X-ray microscopy. His 1971 idea 

of how to fabricate Fresnel zone plates 
for focusing X-rays became a reality 
through the use of IBM’s nanofabrica-
tion technology and with the advent 
of synchrotron radiation sources such 
as the National Synchrotron Light 
Source at Brookhaven National Labo-
ratory in Upton, New York. X-ray 
microscopy based on zone plates is now 
used in synchrotron-radiation facilities  
worldwide. 

Around 1990, Anne developed 
scleroderma, a debilitating disease, 
and David retired from work to care for 
her. But he continued working to real-
ize his 1952 dream: the reconstruction 
of molecular structures without the use 
of crystals. The idea came to fruition  
almost 50 years later, with the publica-
tion in 1999 of the first reconstruction 
of a non-crystalline model object from 
its diffraction pattern (which was J.M.’s 
PhD project). This paper established 
coherent diffraction imaging (CDI), 
also called lensless imaging or diffrac-
tion microscopy, as the most promising 
form of  high-resolution X-ray imaging. 
CDI is now one of the fastest-growing 
fields in X-ray science. 

Anne died in 1998, and in the last 
decade of his life David suffered from 

Parkinson’s disease. But he continued to 
participate in research and to offer advice. A 
researcher with exceptional intuition, David 
lived for science. His passing is a huge loss for 
all of us. ■

Janos Kirz is distinguished professor 
emeritus at Stony Brook University, New 
York, and scientific adviser for the Advanced 
Light Source, Lawrence Berkeley National 
Laboratory, Berkeley, California 94720, 
USA. He was a collaborator and friend of 
David for nearly 40 years. Jianwei Miao is a 
professor in the Department of Physics and 
Astronomy and the California NanoSystems 
Institute, University of California, Los 
Angeles, California 90095, USA. He worked 
with David on coherent diffraction imaging 
beginning in 1996, first as a student, then as a 
collaborator and friend.  
e-mail: miao@physics.ucla.edu
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Max von Laue
(photo 1929)

David Sayre
(photo 1972)

W. O. Saxton
(photo 2012)



Gerchberg-Saxton error reduction (1972)
1 Given current estimate x compute x̂ and «correct» Fourier

amplitude ŷ(f ) := a(f )
x̂(f )

|x̂(f )|
.

2 Take inverse Fourier transform y of ŷ , and «correct»

domain by putting x+(t) =

{
y(t) for t ∈ S
0 for t 6∈ S

.

3 Replace x by x+ and loop on.

=⇒ Optic, astronomy, crystallography, nano-materials, ...
=⇒ Cited 2643 times. Fourth most used algorithm ever
=⇒ No convergence proof since 1972.

We give the first.



Theorem
(Noll, Rondepierre 2013). Suppose the phase retrieval problem has
a solution x∗ ∈ A ∩ B. Suppose the physical domain constraint is
represented by a sub-analytic set B. Then the Gerchberg-Saxton
error reduction method converges in a neighborhood of x∗ with
speed of convergence O

(
k−

2−ω
2ω

)
for some ω ∈ (0, 2).

Proof. Equivalent to non-convex alternating projections :

A = {x ∈ CN : |x̂(f )| = a(f ) for all f }

B = {y ∈ CN : y(t) = 0 for all t 6∈ S}

PA(x) = (ax̂/|x̂ |)̃ PB(y) = y · 1S

�



Fourier phase and amplitude
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Consequences :

Phase of Fourier transform x̂/|x̂ | gives the essential
information about x .
Amplitude of Fourier transform |x̂ | does not help to localize
image x .
Example : shift in time domain changes phase but not
amplitude.
Hence phase retrieval must be difficult. And it is !
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Ideal image x0 is PI-image enlarged to size 1024× 1024 by
0-padding.
0 is black, 256 is white.
Initial guess is blurred and noisy version of the PI-image which
is then rotated 90◦.
Fourier amplitude a = |x̂0| is known exactly.
A = {x ∈ C1024×1024 : |x̂(f )| = a(f ) for all frequencies f }.
B = {y ∈ C1024×1024 : y(t) = 0 for all pixels t not in mask}.
Mask is gray region around the PI-symbol. Prior assumption is
that values outside that mask equal 0.
MAP does not fully succeed within reasonable time.
Douglas-Rachford recovers phase quite nicely.



J. Douglas, H.H. Rachford. On the numerical solution of heat conduction
problems in two and three dimensions. TAMS 82 (1956), 421 – 439.

P.-L. Lions, B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM J.Num. Anal. 16 (1979), 946–979.

J.R. Fienup. Phase retrieval algorithms : a comparison. Applied Optics,
1982. HIO = Hybrid-Input-Output

A B

x

a

y

b

x+

a ∈ PA(x)

y = 2a − x ∈ RA(x)

b ∈ PB(y)

x+ = x + b − a

reflect-reflect-average
b

b

b

b
b

b



Convergence for non-convex alternating projections

A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.
Set-valued Var. Anal.

D. Noll, A. Rondepierre (2013). On local convergence of the method of
alternating projections. Foundations of Computational Mathematics,
2015.



Convergence for non-convex Douglas-Rachford

R. Hesse, D.R. Luke (2013). Nonconvex notions of regularity and
convergence of fundamental algorithms for feasibility problems, SIAM
Journal on Optimization 23(4), 2397–2419.

H.H. Bauschke, D. Noll (2014). On the local convergence of the
Douglas–Rachford algorithm. Archiv der Mathematik 102, 589 – 600.

H.M. Phan (2014). Linear convergence of the Douglas-Rachford method
for two closed sets. Optimzation 2015.



Pointer to Actual News



Comparison of resolution of CDI with :

Chemistry Nobel Price 2014 : Fluorescence Microscopy

Stefan Hell William Moerner Eric Betzig
*1962 *1953 *1960

Fluorescence Microscopy : 1µm = 10−6m
CDI : 10nm = 10−8m (organic)

2 nm = 2 · 10−9m (anorganic)



Thanks for your attention !



Application : EM-algorithm



A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from
incomplete data via the EM-algorithm.
J. Royal Stat. Soc. Series B, vol. 39, no. 1 (1977), 1 – 38.

=⇒ Cited 38230 times since 1977
=⇒ However, convergence proof incorrect.
=⇒ Since then only proofs for specific situations.

Our approach gives the first local convergence proof for Gaussian
laws when parameter set is not convex



Structured low-rank matrix approximation



Given a structured matrix x ∈ S, solve the problem

(P)
minimize ‖x ′ − x‖F
subject to x ′ ∈ S

rank(x ′) ≤ r

S = Hankel matrices (denoising of time series)

S = Toeplitz matrices (spectral estimation problems)

S = positive semidefinite matrices

S = stable matrices

Use non-convex alternating projections :

A = {x : x ∈ S} PA = easy ? ? ?

B = {x : rank(x) ≤ r} PB = truncated SVD

Can now prove local convergence to x∗ ∈ {x : rank(x) ≤ r , x ∈ S}. Need
not be solution of (P)



Sparse affine feasibility



minimize ‖x‖0 = number of non-zero entries in x
subject to Ax = b

x ∈ Rn

Use non-convex alternating projections :

A = {x ∈ Rn : ‖x‖0 ≤ k} =
⋃

card(I )≤k

span{ei : i ∈ I}︸ ︷︷ ︸
=:AI

PA(x) =
⋃

I active

PAI (x)

B = {x ∈ Rn : Ax = b} PB(x) = x − A†(Ax − b)



Packings in Grassmannian manifolds



G(k,Cd) = all k-dimensional subspaces of Cd

Represent S ∈ G(k,Cd) by unitary S ∈ Ck×d : S∗S = Ik , range(S) = S

For two subspaces S ,T do SVD :

S∗T = UCV ∗

then ckk = cos θk the principal angles between S ,T . Leads to distances
between S and T :

Chordal distance :
√

sin2 θ1 + · · ·+ sin2 θk =
(
k − ‖S∗T‖2F

)1/2
Spectral distance : mini sin θi =

(
k − ‖S∗T‖22,2

)1/2
Fubini-Study distance : arccos (Πj cos θj)

Geodesic distance :
√
θ2
1 + · · ·+ θ2

k



Packing for the chordal distance :

pack(S1, . . . , SN) := min
m 6=n

dchord(Sm, Sn) = min
m 6=n

(
k − ‖S∗mSn‖2F

)1/2
True problem : max

{S1,...,SN}
packchord(S1, . . . , SN)

Instead feasibility problem : Given ρ > 0, want {S1, . . . , SN} such
that packchord(S1, . . . , SN) ≥ ρ

min
m 6=n

(
k − ‖S∗mSn‖2F

)1/2 ≥ ρ ≡ max
m 6=n
‖S∗mSn‖F ≤ µ :=

√
k − ρ2



Put S := [S1S2 . . . SN ]

Gramian G = S∗S ∈ CkN×kN � 0, Gmn = S∗mSn

1 G is Hermitian
2 Each diagonal block of G is identity Ik
3 G � 0
4 rank(G ) ≤ d
5 trace(G ) = kN

Conversely, any G with these properties can be factored G = S∗S
and S = [S1 . . . SN ] gives then rise to a configuration of N
subspaces in the Grassmannian G(k ,Cd ).



Now alternating projections :

Structural constraint (convex) :

A = {H ∈ CkN×kN : H = H∗,Hnn = Ik , ‖Hmn‖F ≤ µ}

Spectral constraint (non-convex) :

B = {G ∈ CkN×kN : G � 0, rank(G ) ≤ d , trace(G ) = kN}

Any solution G ∈ A ∩ B gives a packing of size N of the Grassmannian
with chordal distance packing index ≥ ρ.



Compute projection on A (easy) :

H = PA(G ) : Hmn =

{
Gmn ‖Gmn‖F ≤ µ
µGmn/‖Gmn‖F else

Compute projection on B (more involved but possible) :

Let H =
kN∑
j=1

λjuju∗j be spectral decomposition, where

λ1 ≥ λ2 ≥ · · · ≥ λkN . Then

G =
d∑

j=1

(λj − γ)+ uju∗j ∈ PB(H)

provided γ is chosen such that
d∑

j=1

(λj − γ)+ = kN.


