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Alternating projections invented by Hermann Amandus Schwarz in

1869

H. A. Schwarz. Uber einen Grenz-
libergang durch alternirendes
Verfahren.

Vierteljahresschrift  der Naturfor-
schenden Gesellschaft in Zirich,
15(1870), pp. 272-286.

@ Used to solve Dirichlet problem rigorously
@ First domain decomposition method ever

@ Modern re-interpretation by P.-L. Lions 1978, 1988-89.



Method erroneously attributed to J. von Neumann :

S.L. Sobolev. L'algorithme de Schwarz dans la théorie de I'élasticité.
Comptes Rendus de |'Académie des Sciences de I'URSS, 1V :243-246,
1936.

R. Courant, D. Hilbert. Verfahren der mathematischen Physik, Band 2
1930s.

J. von Neumann. Functional Operators Il. Lecture Notes 1950
@ Presents no citations

@ Claims that original version in 1933 has it already



Convex Alternating Projections

@ Schwarz, Sobolev, v. Neumann : Subspaces

@ L.M. Bregman : Weak convergence for convex sets in Hilbert
space. 1965

@ H.H. Bauschke : Convex case essentially settled 1993.

@ H. Hundal. Norm convergence may fail, 2002.









Given : closed sets A, B in R”
ANB#0
Want : solution x of feasibility problem

xe€ANB
Method :

b1 S PB(al), ar € PA(bl), b2 S PB(az), a3 € PA(bg),

or

P, P, P, P,
31—B>b1—A>32—B>b2—A>...



Non-convex Alternating Projections :

@ Are there applications?
e Conditions for local convergence?

@ May convergence fail ?



Failure of convergence



(Combettes, Trussell 1990). Let A, B be closed. Suppose the
sequence of alternating projections ay, by is bounded and satisfies
ax — by — 0. Then the set of accumulation points of ay, by is
either singleton or a compact continuum. Every accumulation point
is a solution of the feasibility problem.

(Bauschke, Noll 2013). The case of a non-trivial compact
continuum may indeed occur.
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Jrdsth 7t yucC, B d
. , — n th
{ond 4th gth 1y C.

ANB=C={z:|z|] =1}




A= {(cost,sint,s):0<s<10<t<2r}
B = {(cost(1+4 e t),sint(1+e7%),e %) : 0 < t < oo}

Bauschke, Noll (2014, Archiv der Mathematik)



Are there applications ?



Non-convex Alternating Projections used in :

@ Color plane interpolation (de-mosaicking)

@ De-noising of time-series (Cadzow's basic algorithm, Singular
Spectrum Analysis)

@ Inverse eigenvalue problems

@ Pole placement (control)

@ Synthesis of low-order feedback controllers (control)

@ Road profile design (western Canada)

@ Recovery of lost image blocks in JPEG and MPEG images

@ Sparse affine feasibility (for error correction in linear codes)

@ Packings in Grassmannian manifolds (wireless communication)
@ EM-algorithm for Gaussian laws

@ Phase retrieval



Local convergence



(A.S. Lewis, J. Malick 2008). Let A, B be C?-manifolds in R"
intersecting transversally at x* € AN B. Then there exists a
neighborhood U of x* such that every alternating sequence ay, by
which enters U converges to some a* € AN B with R-linear speed.

B

Transversality
TA(X*) + TB(X*) =R"

I




Theorem
(A.S. Lewis, R. Luke, J. Malick 2009). Suppose

©Q There exists x* € AN B such that Na(x*) N —Ng(x*) = {0}
(replaces transversality).

© B is super-regular (replaces convexity).

Then there exists a neighborhood U of x* such that every alternating
sequence ay, by which enters U converges to some a* € AN B with
R-linear speed.

Np(x*) N (x*)

Na(x*
NaGe®) a(x")




A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

@ Transversality too restrictive. Two non-parallel lines in R? intersect
transversally, but no longer in R3

@ Same for Na(x*) N —Ng(x*) C {0}.

@ Need an additional regularity hypothesis called super-regularity.
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H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.
Set-valued Var. Anal.

Na(x*) N —Ng(x*)

7

B

Np(x*)

Na(x*)




Use restricted normal cones instead :

NE(x*) = normals to A at x* pointing into B

Transversality at x* becomes :

NZ (x*) N =Ng(x*) € {0}
Works better, but still not good enough.

Definition

(Noll, Rondepierre 2013). Transversality is when « stays away from 0° in
neighborhood of x*.




What happens when the intersection is tangentiel 7

e |s failure of convergence due to the lack of regularity 7

e oris it because the intersection is (too) tangential ?



a = 180° (transversal) intersection tangential

Regularity missing Regularity OK




How to deal with tangential intersection ?



Noll, Rondepierre 2013 :




Tangential intersection :




Tangential intersection :




Tangential intersection :

a=Z(a—b,a" —b)and r=|b—a"|

both shrink to 0 as we approach x*



Definition

(Noll, Rondepierre 2013). The sets A, B satisfy the angle condition at
x* € AN B if there exists v > 0, w € [0,2) and a neighborhood U of x*
such that for every building block a Fe, b PA 2+ in U we have

sin o

>

rw

@ Tangential intersection means « and r both shrink to 0.

@ Angle condition means they shrink in controlled fashion. Angle does
not shrink too fast.

@ Special case w = 0 gives back transversality (angle does not shrink,
but distance r does).



Theorem

(Noll, Rondepierre 2013). Suppose there exists x* € AN B such
that

Q A, B satisfy the w-angle condition at x*.
@ B is w/2-Holder regular at x* with respect to A.

Then there exists a neighborhood U of x* such that every
alternating sequence ay, b, which enters U converges to some point
a* € AN B. The speed of convergence is

w w

law -2l =0 (k=) lbe—a"ll =0 (k=)

Special case w = 0 gives R-linear convergence



Noll, Rondepierre 2013). Suppose A, B are sub-analytic sets and
x* € AN B. Then there exists w € [0,2) such that A, B intersect
with w-angle condition at x*.

Semi-analytic set :

N M
A= U ﬂ{x e R": ¢ji(x) = 0,4;(x) > 0}

i=1j=1

with real-analytic functions ¢;;, ;.

A sub-analytic <= Va € A 3r > 0 3.4 bounded semi-analytic
ANB(a,r)={x:(x,y) € A}



How about Hélder regularity ?



B convex




B convex

B = 90°




B non-convex




B non-convex

B < 90° possible




B non-convex
B super-regular :

£ not too small




B non-convex
B superregular :

53 not too small




B non-convex
B superregular :

53 not too small







here it fails















Consequence : Our notion of Holder regularity still in business for
packman. Can enter into corners.



Corollary

(Noll, Rondepierre 2013). Suppose A, B are sub-analytic, and B is
Hélder regular with respect to A. Suppose the alternating sequence
ak, by is bounded and satisfies a, — b, — 0. Then there exists

w € [0,2) such that it converges to a point a* € AN B with speed

2—w

lax —a* | =0 (k7%°), b -] =0 (k=)




Application : Phase retrieval



Phase retrieval

Reconstruct unknown signal x(t), t =0,..., N — 1 from known
Fourier amplitude a(f) = [x(f)|, f =0,...,N — 1.

@ Retrieve unknown phase X(f)/[x(f)|, hence the name.

@ Have to add prior information like known support of x in time
domain : x(t) =0for t ¢ S.

@ Or additional measurements (Fourier amplitude from a second
Fourier plane; Gerchberg-Saxton 1972).



Phase retrieval in interferometry (optics) :

@ First mentioned in a letter by Lord Rayleigh to A. Michelson in
1892.
@ Impossibility to solve without prior information clearly stated.

@ First numerical scheme : Gerchberg-Saxton algorithm 1972

ol \|

Lord Rayleigh A. Michelson
(early 1900s) (1907)




Some history



@ Max von Laue (1912) proposes to use X-rays to visualise crystal
structure via diffraction.

@ David Sayre (1952) shows that non-periodic x can in principle also
be retrieved from [X| if a = |X]| is sampled twice the Nyquist rate in
every dimension.

e Deplores lack of methods to do it.

e Hence participates in development of 1st fortran compiler.

@ R.W. Gerchberg - O.W. Saxton (1972). 1st algorithm to retrieve x
from |x|.

@ J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the
methodology of X-ray crystallography to allow imaging of
micrometre-sized non-crystalline specimens, Nature 400, 342-344,

1999. 45 years later Sayre is back !

@ 2014. Individual proteins and nano-crystals can be visualized by CDI.



s ';,"’/f /
Max von Laue David Sayre W. O. Saxton
(photo 1929) (photo 1972) (photo 2012)




Gerchberg-Saxton error reduction (1972)

@ Given current estimate x compute X and «correcty Fourier
. ~ x(f)
amplitude y(f) := a(f) —=—.
x(F)|
@ Take inverse Fourier transform y of y, and «correct»
y(t) forte$S
0 fort ¢S -

domain by putting x*(t) = {

© Replace x by x* and loop on.

— Optic, astronomy, crystallography, nano-materials, ...
= Cited 2643 times. Fourth most used algorithm ever

— No convergence proof since 1972.
We give the first.



Theorem

(Noll, Rondepierre 2013). Suppose the phase retrieval problem has
a solution x* € AN B. Suppose the physical domain constraint is
represented by a sub-analytic set B. Then the Gerchberg-Saxton
error reduction method converges in a neighborhood of x* with

speed of convergence O <k72§Tw> for some w € (0, 2).

Proof. Equivalent to non-convex alternating projections :
A= {x e CN:[X(f)| = a(f) for all f}
B={yeCN:y(t)=0forall t ¢S}

Pa(x) = (ax/[x]) Pe(y) =y-1s



Fourier phase and amplitude









Consequences :
@ Phase of Fourier transform X/|x| gives the essential
information about x.

@ Amplitude of Fourier transform |Xx| does not help to localize
image x.

@ Example : shift in time domain changes phase but not
amplitude.

@ Hence phase retrieval must be difficult. And it is!



original (unknown) Fourier phase (unknown)

Fourier amplitude (known) estimated support (prior)



mapl00 map200

dr7 dr20 dr36 dr60




Ideal image xg is Pl-image enlarged to size 1024 x 1024 by
0-padding.

@ 0 is black, 256 is white.

@ Initial guess is blurred and noisy version of the Pl-image which

is then rotated 90°.

Fourier amplitude a = |Xp| is known exactly.

A = {x € C1024x1024 . |3(f)| = a(f) for all frequencies f}.
B = {y € C1024x1024 . y(+) = 0 for all pixels t not in mask}.

Mask is gray region around the Pl-symbol. Prior assumption is
that values outside that mask equal 0.

MAP does not fully succeed within reasonable time.

@ Douglas-Rachford recovers phase quite nicely.



J. Douglas, H.H. Rachford. On the numerical solution of heat conduction
problems in two and three dimensions. TAMS 82 (1956), 421 — 439.

P.-L. Lions, B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM J.Num. Anal. 16 (1979), 946-979.

J.R. Fienup. Phase retrieval algorithms : a comparison. Applied Optics,
1982. HIO = Hybrid-Input-Output

a € Pa(x)
y =2a—x € Ra(x)

bGPB(y)
xT=x+b—-a

reflect-reflect-average




Convergence for non-convex alternating projections

A.S. Lewis, J. Malick (2008). Alternating projections on manifolds.
Math. Oper. Res.

A.S. Lewis, R. Luke, J. Malick (2009). Local linear convergence for
alternating and averaged non-convex projections.
Foundations Comp. Math.

H.H. Bauschke, D.R. Luke, H.M. Phan, X. Wang (2013). Restricted
normal cones and the method of alternating projections.
Set-valued Var. Anal.

D. Noll, A. Rondepierre (2013). On local convergence of the method of
alternating projections. Foundations of Computational Mathematics,
2015.



Convergence for non-convex Douglas-Rachford

R. Hesse, D.R. Luke (2013). Nonconvex notions of regularity and
convergence of fundamental algorithms for feasibility problems, SIAM
Journal on Optimization 23(4), 2397-2419.

H.H. Bauschke, D. Noll (2014). On the local convergence of the
Douglas—Rachford algorithm. Archiv der Mathematik 102, 589 — 600.

H.M. Phan (2014). Linear convergence of the Douglas-Rachford method
for two closed sets. Optimzation 2015.



Pointer to Actual News



Comparison of resolution of CDI with :

Chemistry Nobel Price 2014 : Fluorescence Microscopy

/ { 5
Stefan Hell William Moerner Eric Betzig
*1962 *1953 *1960

Fluorescence Microscopy : 1um = 10"%m
CDI : 10nm = 10~®m (organic)
2 nm = 2-10"°m (anorganic)




Thanks for your attention !



Application : EM-algorithm



A.P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from
incomplete data via the EM-algorithm.
J. Royal Stat. Soc. Series B, vol. 39, no. 1 (1977), 1 — 38.

— Cited 38230 times since 1977
— However, convergence proof incorrect.
= Since then only proofs for specific situations.

Our approach gives the first local convergence proof for Gaussian
laws when parameter set is not convex



Structured low-rank matrix approximation



Given a structured matrix x € S, solve the problem

minimize  ||x" — x||¢
(P) subjectto x' €8
rank(x’) <r

@ S = Hankel matrices (denoising of time series)
@ S = Toeplitz matrices (spectral estimation problems)
@ S = positive semidefinite matrices
°

S = stable matrices
Use non-convex alternating projections :
A={x:xeS} Pa=easy??7

B = {x : rank(x) < r} Pg = truncated SVD

Can now prove local convergence to x* € {x : rank(x) < r,x € §}. Need
not be solution of (P)



Sparse affine feasibility



minimize  ||x||o = number of non-zero entries in x
subjectto Ax=0b
x € R"

Use non-convex alternating projections :

A={xeR":|x|]jo < k} = U span{e; : i € I}
card(/)<k —A

Palx) = |J Pa(x)

Iactive

B={xeR": Ax = b} Ps(x) = x — AT(Ax — b)



Packings in Grassmannian manifolds



G(k,C%) = all k-dimensional subspaces of C¢
Represent S € G(k,C9) by unitary S € Ck*9 : §*S = |, range(S) = S
For two subspaces S, T do SVD :

S*T = UCv*

then ¢y, = cos 8y the principal angles between S, T. Leads to distances
between S and T :

@ Chordal distance : \/sin®6; + - - - + sin® 0 = (k—| 5~ T||,2:)1/2

@ Spectral distance : min;sin¢; = (k — ||S* T||§,2)1/2

@ Fubini-Study distance : arccos (1; cos ¢;)

@ Geodesic distance : /02 + - + 62



Packing for the chordal distance :

pack(Si,...,Sy) = m7ién dehord(Sm, Sn) = myién (k - ||5,’;,5nH$_-)1/2

True problem :  max pack S51,...,S
p {51,...,5N}p chord( 1 N)

Instead feasibility problem : Given p > 0, want {S;,...,Sn} such
that packg,0,q(S1,---,Sn) > p

. % 1/2 %
min (k — [|1S5.5113) " > p = max||S5Sallr < pi= vk — p2
m#n m#n



Put S := [5152 ... 5/\/]
Gramian G = §*S € CKNXAN = 0 G, = §* 5,

@ G is Hermitian
@ Each diagonal block of G is identity /x
Q@ G-0
Q rank(G) < d
O trace(G) = kN
Conversely, any G with these properties can be factored G = §*S

and S = [S1 ... Sn] gives then rise to a configuration of N
subspaces in the Grassmannian G(k,C9).



Now alternating projections :
Structural constraint (convex) :
A={HecCN Nt — H* Hpp = I, |HmnllF < 1}
Spectral constraint (non-convex) :
B ={G e CN*N. G » 0,rank(G) < d, trace(G) = kN}

Any solution G € AN B gives a packing of size N of the Grassmannian
with chordal distance packing index > p.



Compute projection on A (easy) :

Gmn | GnllF < 1t
H = Pa(G) : Hpn =
A(6) { wGmn/||GmnllF  else

Compute projection on B (more involved but possible) :

kN
Let H = Z Ajuju; be spectral decomposition, where

=1
A1 > A2 > - > Ay Then

d
G=> (N—7), uu € Ps(H)

Jj=1
d

provided +y is chosen such that Z (A =), = kN.

j=t



