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A mathematical model for continuous
crystallization

A. Rachaha∗†, D. Nolla, F. Espitalierb and F. Baillonb

We discuss a mixed suspension mixed product removal crystallizer operated at thermodynamic equilibrium. We derive and

discuss the mathematical model based on population and mass balance equations, and prove local existence and uniqueness

of solutions using the method of characteristics. We also discuss the global existence of solutions for continuous and batch

mode. Finally, a numerical simulation of a continuous crystallizer in steady state is presented. Copyright c© 2014 John
Wiley & Sons, Ltd.
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1. Introduction

Crystallization is a liquid-solid separation process, where solids are formed from a solution. The principal processes in crystallization

include nucleation, crystal growth, breakage, attrition, and possibly agglomeration and secondary nucleation.

Nucleation is the phase where solute molecules dispersed in the surrounding solvent start to form clusters, which according to

the operating conditions are arranged in a defined periodic manner. Crystal growth is the subsequent accretion process of nuclei,

driven by supersaturation. Crystal birth and growth cease when the solid-liquid system reaches equilibrium due to the exhaustion

of supersaturation.

Figure 1 shows a drawing of a continuous crystallizer with four possible external commands. This includes solute feed to

maintain a satisfactory level of supersaturation, fines removal, used in industrial crystallizers to avoid a large quantity of extremely

fine crystals hindering sustainable growth, product removal, continuous flow out of the container, and heating or cooling. Internal

processes include crystal birth and growth, attrition and breakage, and possibly particle agglomeration. The process operates as

follows: liquid solution is fed to the crystallizer. The supersaturation is generated by cooling. Due to supersaturation, crystals are

formed from the solution and grow. Solution and crystals are continuously removed from the crystallizer by the product outlet

(see several applications [6, 11, 12]). Continuous crystallization processes in the pharmaceutical industry are usually designed

to obtain crystals with sizes in specific range, shape, purity, and polymorphic form like the active pharmaceutical ingredients

(API)[11, 12].

Crystallization is modeled by a population balance equation, in combination with a molar balance and possibly a thermodynamic

or energy balance. Mathematical models of crystallization are known for a variety of processes, but continuous crystallization

with fines dissolution and classified product removal including breakage has not been discussed in the literature within a complete

model including population, molar and energy balances. The model we derive here includes breakage, but not agglomeration, as

the latter is known to be negligible.

Related models featuring structured population balances are used in the understanding of biological population dynamics.

For instance, physiologically structured populations are investigated by Farkas [16] and Farkas and Hagen [18], where the

authors study stability of such processes using the semigroup approach [16, 18]. Models including coagulation-fragmentation

have been considered e.g. by Amann and Walker [20], where the authors discuss the existence of solutions of continuous diffusive

coagulation-fragmentation models. Similar models without diffusion are discussed by Giri [14], Rudnicki [19] and Morale [21].

Models describing the spread of infection of transmitted diseases are investigated by Calsina and Farkas [17], where the authors

discuss existence of solutions using a fixed-point approach. A similar line is chosen in an epidemic model treated by Lanelli
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[22, 23], and for tumor growth by Perthame [24, 25]. Laurençot and Walker [13, 15, 26] use an approach by weak solutions for

a model of infectious diseases.

Our present work applies structured population balance models in tandem with mass and energy balances to the study of

continuous crystallization of Potassium Chloride (KCl) with fines dissolution and product removal including breakage. Potassium

Chloride is used in medicine to prevent or to treat low blood levels of potassium (hypokalemia). It is also used in food processing

as a sodium-free substitute for table salt [27].

The mathematical model presented here is based on the following assumptions. Crystals are characterized by their size L, a

one-dimensional quantity, and we introduce a volume shape factor kv such that a particle of size L has volume vp = kvL
3. The

crystallizer is operated at isothermal conditions under ideal mixing due to stirring. We assume that nucleation takes place at

negligible size L = 0, that crystal growth rate is size independent, and that agglomeration is negligible.

Under these assumptions we derive the model equations, and then validate the model mathematically by proving first local,

and then global, existence and uniqueness of the solution. We also indicate how more general situations (size dependent growth,

temperature dependence of saturation constant, agglomeration) can be integrated in the setting. Our proof expands on Gurtin

and MacCamy (see [3]) and Calsina (see [4]), see also [2, 7]. The full model for which existence of solutions is proved comprises

equations (11)-(16), which we derive in the following sections.

The structure of the paper is as follows. In sections 2.1 and 2.2 the model of the mixed suspension mixed product removal

(MSMPR) crystallizer is derived from population and mass balances. Local existence and uniqueness are proved in sections 3.

Global existence is discussed in section 4. Finally, a numerical simulation of a continuous crystallizer in steady state is presented

in section 5.

Figure 1. Continuous KCl-crystallizer [5] filled with liquid (solute and solvent) and solids (crystals). Internal processes are nucleation, growth, attrition and

breakage, and possibly agglomeration. External phenomena include solute feed cf at rate q (upper left) recycling of fines hf (upper right), product removal hp

(lower right), stirring, and possibly heating or cooling to act on the saturation concentration cs .

2. Modeling and process dynamics

2.1. Population balance equation

The population balance equation describes a first interaction between the population of solid crystals, classified by their size L,

and a second ageless population of solute molecules of the constituent in liquid phase. The equation models birth, growth and

death of crystals, as well as breakage and attrition.

We denote by n(L, t) the number of crystals of the constituent of size L in one cubic meter of the suspension at time t, or

crystal size distribution (CSD), whose unit is [1/mm · ℓ]. By c(t) we denote the solute concentration of the constituent in the
liquid phase, or in other words, the amount of solute per volume of the liquid part of the suspension, whose unit is [mol/ℓ]. This

second population is unstructured. Now the population balance equation has the form





∂n(L, t)

∂t
+ G(c(t))

∂n(L, t)

∂L
= −

q

V
(1 + hf (L) + hp(L)) n(L, t)

−a(L) n(L, t) +

∫ ∞

L

a(L̂)b(L̂, L) n(L̂, t) dL̂

n(L, 0) = n0(L), n(0, t) =
B(c(t))

G(c(t))

(1)

Here the differential operator on the left describes the growth of the population of crystals of size L, while the terms on the

right describe external effects like fines dissolution, product removal, flow into and out of the crystallizer, breakage and attrition.

Extended modeling could also account for agglomeration of crystals [8, 9].
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The function hp(L) describes the profile of the product removal filter, which removes large particles with a certain probability

according to size. In the ideal case, assumed e.g. in [5], one has

hp(L) =

{
Rp if L ≥ Lp
0 if L < Lp

(2)

where Lp is the product removal size and Rp the product removal rate. This corresponds to an ideal high-pass filter. Fines

removal is characterized by the classification function hf , which ideally is a low-pass filter of the form

hf (L) =

{
0 if L > Lf
Rf if L ≤ Lf

(3)

where Rf is the fines removal rate, and Lf is the fine size. Notice that when Rp = Rf = 0, particles are removed indifferently of

size due to flow out of the crystallizer with rate q/V . The case q = 0 corresponds to batch mode, where the total mass in the

suspension is preserved.

The growth rate G(c(t)) in (1) is assumed independent of crystal size L and depends on the concentration of solute c(t) in

the liquid phase. One often assumes a phenomenological formula

G(c(t)) = kg (c(t)− cs)
g , (4)

where growth coefficient kg and growth exponent g depend on the constituent, and where cs is the saturation concentration,

[5, 6, 10]. For theory it suffices to assume that G is locally Lipschitz with G(c) > 0 for supersaturation c > cs , and G(c) < 0

for c < cs , in which case crystals shrink.

The breakage integral on the right of (1) can be explained as follows. The term a(L) represents the breakage rate, i.e.,

the probability that a particle of size L is broken into two particles of smaller sizes L̂, ˆ̂L. The term b(L, L̂) is the conditional

probability that a particle of size L is broken onto two pieces of size L̂ and ˆ̂L with L̂ ≥ ˆ̂L, where

L3 = L̂3 + ˆ̂L3, (5)

assures that breakage does not change the overall crystal volume or mass, given that crystals are characterized by size L and

have volume kvL
3. This means we have a sink term and source term. The sink term gathers particles leaving size L by being

broken down to smaller sizes L̂ < L. This leads to

Q−break(L, t) =

∫ L

2−1/3L

a(L)b(L, L̂)n(L, t)dL̂ = a(L)n(L, t)

∫ L

2−1/3L

b(L, L̂)dL̂ = a(L)n(L, t),

as b(L, L̂) is a probability density. The source term at size L has the form

Q+break(L, t) =

∫ 21/3L

L

a(L̂)b(L̂, L)n(L̂, t)dL̂+

∫ ∞

21/3L

a(L̂)b
(
L̂→

(
L̂3 − L3

)1/3)
n(L̂, t)dL̂,

representing particles broken down from all possible larger sizes L̂ ≥ L to size L. The left hand term counts those events
where the larger particle has size L, the right hand term those where the particle of size L is the smaller one. In the event

b(L, L̂) = b(L, (L3 − L̂3)1/3), b will be symmetrized, so that the first integral has the form given on the right of (1).
Let us examine the mass balance of breakage. The total mass of crystals being broken is

m−break(t) =

∫ ∞

0

Q−break(L, t)L
3dL =

∫ ∞

0

a(L)n(L, t)L3 dL.

On the other hand, the total mass of new crystals born due to breakage is

m+break(t) =

∫ ∞

0

Q+break(L, t)L
3dL =

∫ ∞

0

∫ 21/3L

L

a(L̂)b(L̂, L)n(L̂, t)dL̂L3dL

+

∫ ∞

0

∫ ∞

21/3L

a(L̂)b
(
L̂,
(
L̂3 − L3

)1/3)
n(L̂, t)dL̂L3dL

=

∫ ∞

0

a(L̂)n(L̂, t)

∫ L̂

2−1/3L̂

b(L̂, L)L3dLdL̂

+

∫ ∞

0

a(L̂)n(L̂, t)

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)L3dLdL̂

=

∫ ∞

0

a(L̂)n(L̂, t)

{∫ L̂

2−1/3L̂

b(L̂, L)L3dL+

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)L3dL

}
dL̂

=

∫ ∞

0

a(L̂)n(L̂, t)L̂3dL = m−break(t),
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at all times t, because the term {. . . } equals

{. . . } =

∫ L̂

2−1/3L̂

b(L̂, L)L3dL+

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)L3dL

=

∫ L̂

2−1/3L̂

b(L̂, L)L3dL+

∫ L̂

2−1/3L̂

b(L̂, L)ˆ̂L3dL

=

∫ L̂

2−1/3L̂

b(L̂, L)(L3 + ˆ̂L3)dL = L̂3
∫ L̂

2−1/3L̂

b(L̂, L)dL = L̂3.

This confirms that breakage leaves the total crystal mass invariant. In contrast, if we compute the balance of number of

individuals being broken, we obtain

Q+break(t) =

∫ ∞

0

Q+break(L, t)dL =

∫ ∞

0

∫ 21/3L

L

a(L̂)b(L̂, L)n(L̂, t)dL̂dL

+

∫ ∞

0

∫ ∞

21/3L

a(L̂)b
(
L̂,
(
L̂3 − L3

)1/3)
n(L̂, t)dL̂dL

=

∫ ∞

0

a(L̂)n(L̂, t)

∫ L̂

2−1/3L̂

b(L̂, L)dLdL̂

+

∫ ∞

0

a(L̂)n(L̂, t)

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)dLdL̂

=

∫ ∞

0

a(L̂)n(L̂, t)

{∫ L̂

2−1/3L̂

b(L̂, L)dL+

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)dL

}
dL̂

=

∫ ∞

0

a(L̂)n(L̂, t)2dL = 2Q−break(t),

because the term {. . . } equals

{. . . } =

∫ L̂

2−1/3L̂

b(L̂→ L)dL+

∫ 2−1/3L̂

0

b(L̂, (L̂3 − L3)1/3)dL

=

∫ L̂

2−1/3L̂

b(L̂→ L)dL+

∫ L̂

2−1/3L̂

b(L̂, L)dL = 2.

Not surprisingly, breakage doubles the total number of individuals of that part of the population which undergoes breakage.

Remark 1 It is possible to classify particles by volume, as discussed in Hu, Rohani and Jutan ([28]). This requires organizing the

balance equations accordingly, and simplifies the presentation of breakage, as for instance (5) becomes V = V̂ + ˆ̂V . Nonetheless

we prefer to characterize particles by size L, as this allows to discuss first and second moments which describe the total crystal

length and surface. In control applications [29] this allows for instance to address quantities like the weighted mean diameter

d43 =
∫∞
0
n(L, t)L4dL/

∫∞
0
n(L, t)L3dL, the Sauter mean diameter d32 =

∫∞
0
n(L, t)L3dL/

∫∞
0
n(L, t)L2dL [6, 8], and other

quantities, which are not accessible in a model based on the unit V .

Equation (1) goes along with initial and boundary conditions. The initial crystal distribution n0(L) is called the seed. The

boundary condition n(0, t) = B(c(t))/G(c(t)) models birth of crystals at size L = 0 and is governed by the ratio B/G of birth

rate B(c) over growth rate G(c). Again it is customary to assume a phenomenological law of the form

B(c(t)) = kb
(
(c(t)− cs)+

)b
(6)

for the birth rate, where kb is the nucleation or birth coefficient, b the birth exponent, and q+ = max{0, q}. For theory it is
enough to assume that B is locally Lipschitz with B > 0 for c > cs and B = 0 for c ≤ cs , meaning that nucleation only takes
place in a supersaturated suspension.

2.2. Mole balance equation

We now derive a second equation, which models the influence of various internal and external effects on the second population,

the concentration c(t) of solute molecules in the liquid. The so-called mole balance equation is obtained by investigating the

mass balance within the crystallizer.

4 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–21
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Table 1. Parameters.

Feed rate q 0.05 l/min

Total volume V 10.5 l

Fines removal cut size Lf 0.2 mm

Product cut size Lp 1 mm

Fines removal constant Rf 5 −
Product removal constant Rp 2 −
Growth rate constant kg 0.0305 mm l/min mol

Growth rate exponant g 1 −
Nucleation rate constant kb 8.36× 109 l3/min mol4

Nucleation rate exponant b 4 −
KCl crystal density ρ 1989 g/l

Mole mass KCl M 74.551 g/mol

Volumetric shape factor kv 0.112 −
Saturation concentration cs 4.038 mol/l

Table 2. Size- and time-dependent quantities

quantity symbol unit

Crystal size distribution n(L, t) #/mm l

Crystal seed n0(L) ♯/m.m3

Crystal breakage rate a(L) 1/min

Breakage type b(L̂, L) 1/mm

Molar concentration of solute in liquid c(t) mol/l

Solute feed concentration cf (t) mol/l

In this study we will consider the total volume V of the suspension as constant, which leads to the formula

dmsolute(t)

dt
=
d(V εc(t)M)

dt
= V
dε(t)

dt
c(t)M + V ε(t)

dc(t)

dt
M (7)

= qcfM − qc(t)εM − 3V kvρG(c(t))

∫ ∞

0

n(L, t)L2dL+ qkvρ

∫ ∞

0

hf (L)n(L, t)L
3dL,

where cf (t) is the feed concentration and ε(t) is the void fraction (see also (51) in the appendix), which takes the form

ε(t) = 1− kv

∫ ∞

0

n(L, t)L3dL. (8)

Typical parameter values for KCl-crystallization are given in Table 1. By substituting (8) and its derivative into (7), the mass

balance of solute in the liquid phase is finally obtained as

M
dc(t)

dt
=
q(ρ−Mc(t))

V
+
ρ−Mc(t)

ε(t)

dε(t)

dt
+
qcf (t)M

V ε(t)
−
qρ

V ε(t)
(1 + kvν(t)) (9)

with

ν(t) = Rp

∫ ∞

Lp

n(L, t)L3dL. (10)

More details on how (9) is derived from the mass balance are given in the appendix.

3. Existence and uniqueness

In this chapter we develop our proof of local existence and uniqueness. This requires several preparatory steps. For convenience,

let us recall the complete model described by the population and molar balances. The population balance equation is given by

∂n(L, t)

∂t
= −G(c(t))

∂n(L, t)

∂L
− h(L)n(L, t) + w(L, t) (11)

Math. Meth. Appl. Sci. 2014, 00 1–21 Copyright c© 2014 John Wiley & Sons, Ltd. 5
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where

w(L, t) :=

∫ ∞

L

a(L̂)b(L̂, L)n(L̂, t)dL̂ (12)

is the source term due to breakage and attrition, and

h(L) := (q/V )(1 + hf (L) + hp(L)) + a(L) > 0 (13)

is the sink gathering all attenuating terms. The boundary value is given by

n(0, t) =
B(c(t))

G(c(t))
, t ≥ 0 (14)

and the initial condition is given by

n(L, 0) = n0(L), L ∈ [0,∞) (15)

coupled with the mole balance equation

dc(t)

dt
= −

(
q

V
+
ǫ′(t)

ǫ(t)

)
c(t) +

1

ǫ(t)

[
qcf (t)

V
+
ρ

M
ǫ′(t)−

qρ

V M
(1 + kvRpν(t))

]
+
qρ

V M
(16)

c(0) = c0

where

ǫ(t) = 1− kv

∫ ∞

0

n(L, t)L3 dL and ν(t) =

∫ ∞

0

hp(L)n(L, t)L
3dL.

3.1. Moments and characteristics

In this part we present a transformation of the model using moments and characteristic curves. Introducing the third moment

µ(t) =
∫∞
0 n(L, t)L

3 dL, we have ǫ(t) = 1− kvµ(t) and ǫ
′(t) = −kvµ

′(t).

Lemma 3.1 Suppose the function c(t) with c(0) = c0 > 0 satisfies the mole balance equation (16). Then

(17)

c(t) = e

∫ t
0 −

(

q
V +

−kv µ′(τ)
1−kv µ(τ)

)

dτ
(
c0 +

∫ t

0

[
1

1− kvµ(τ)

[
qcf (τ)

V
+
ρ

M
− kvµ

′(τ)−
qρ

V M
(1 + kvν(τ))

]
+
qρ

V M

]

×e

∫ τ
0

(

q
V +

−kv µ′(s)
1−kv µ(s)

)

ds
dτ

)
.

Proof By solving (16) with respect to c(t) using variation of the constant, we obtain

(18)

c(t) = e

∫ t
0 −

(

q
V +

ǫ′(τ)
ǫ(τ)

)

dτ

(
c0 +

∫ t

0

[
1

ǫ(τ)

[
qcf (τ)

V
+
ρ

M
ǫ′(τ)−

qρ

V M
(1 + kvRpν(τ))

]
+
qρ

V M

]
e

∫ τ
0

(

q
V +

ǫ′(s)
ǫ(s)

)

ds
dτ

)
.

Now using ǫ(t) = 1− kvµ(t) and ǫ
′(t) = −kvµ

′(t), (18) transforms into

(19)

c(t) = e

∫ t
0 −

(

q
V +

−kv µ′(τ)
1−kv µ(τ)

)

dτ
(
c0 +

∫ t

0

[
1

1− kvµ(τ)

[
qcf (τ)

V
+
ρ

M
− kvµ

′(τ)−
qρ

V M
(1 + kvν(τ))

]
+
qρ

V M

]

×e

∫ τ
0

(

q
V +

−kv µ′(s)
1−kv µ(s)

)

ds
dτ

)
.

�

Next we introduce characteristic curves. For t0 and L0 fixed we let φt0,L0 be the solution of the initial value problem

dφ(t)

dt
= G(c(t)), φ(t0) = L0.

Since the right hand side does not depend on L, we have explicitly

φt0,L0(t) = L0 +

∫ t

t0

G(c(τ))dτ. (20)

6 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–21
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We write specifically z(t) := φ0,0(t). Now we introduce a family of functions Nt,L which we use later to define n(L, t) via

Nt0,L0(t) := n(φt0,L0(t), t). If we let L = φt0 ,L0(t), then Nt0,L0 satisfies

dNt0,L0(t)

dt
=
∂n(L, t)

∂L
φ′t0,L0(t) +

∂n(L, t)

∂t
=
∂n(L, t)

∂L
G(c(t)) +

∂n(L, t)

∂t
.

Therefore (11) transforms into

dNt0,L0(t)

dt
= −h(φt0,L0(t))Nt0 ,L0(t) + w(φt0 ,L0(t), t), (21)

and we consequently use these ODEs to define the functions Nt,L. Integration of (21) gives

Nt0,L0(t) =

(
Nt0,L0(t0) +

∫ t

t0

w(φt0,L0(τ), τ) exp

{∫ τ

t0

h(φt0,L0(σ))dσ

}
dτ

)
exp

{
−

∫ t

t0

h(φt0,L0(τ)dτ

}
. (22)

We can exploit this for two possible situations, where Nt0,L0(t0) can be given an appropriate value.

Before putting this to work, we will need two auxiliary functions τ and ξ, which are easily defined using the characteristics.

First we define τ = τ(t, L) implicitly by

φτ,0(t) = L, or equivalently, φt,L(τ) = 0, (23)

or again,

∫ t

τ(t,L)

G(c(σ)) dσ = L. (24)

Then we define ξ = ξ(t, L) = φt,L(0), which gives ξ = L+

∫ 0

t

G(c(τ)) dτ .

Definition 3.1 We define a candidate solution n(L0, t0) of the population balance equation (1) by the formula

n(L0, t0) =






(
B(c(τ0))

G(c(τ0))
+

∫ t0

τ0

w(φτ0,0(s), s) exp

{∫ s

τ0

h(φτ0 ,0(σ))dσ

}
ds

)

× exp

(
−

∫ t0

τ0

h(φτ0,0(s)) ds

)
, if L0 < z(t0)

(
n0(φt0 ,L0(0)) +

∫ t0

0

w(φt0 ,L0(s), s) exp

{∫ s

0

h(φt0,L0(σ))dσ

}
ds

)

× exp

(
−

∫ t0

0

h(φt0,L0(s)) ds

)
, if L0 ≥ z(t0)

(25)

where on the right hand side the construction uses Nt,L, respectively, (22), and where τ0 = τ(t0, L0), L0 = φ(t0), z(t0) = φ0,0(t0)

and t0 ∈ [0, T ].

The formula is justified as follows. Let t0, L0 be such that L0 < z(t0) = φ0,0(t0). This is the case where τ0 = τ(t0, L0) > 0.

Here we consider equation (21) for Nτ0,0 with initial value Nτ0,0(τ0) = n(φτ0,0(τ0), τ0) = n(0, τ0) = B(c(τ0))/G(c(τ0)). This

uses the fact that φτ0,0(τ0) = 0 according to the definition of φτ,0. Integration clearly gives the upper branch of (25).

Next consider t0, L0 such that L0 ≥ z(t0). Then τ0 < 0, so that we do not want to use it as initial value. We therefore apply
(21), (22) to Nt0,L0 , now with initial time 0. Then we get

Nt0,L0(t0) =

(
Nt0,L0(0) +

∫ t0

0

w(φt0,L0(s), s) exp

{∫ s

0

h(φt0,L0(σ))dσ

}
ds

)
exp

(
−

∫ t0

0

h(φt0,L0(s)) ds

)
.

Here Nt0,L0(0) = n(φt0,L0(0), 0) = n0(φt0,L0(0)), so we get the lower branch of (25) all right. This justifies formula (25).

By using moments, c , φt,L and n(L, t) defined by (19), (20), (25), we will represent the problem of existence and uniqueness

of the solution of (11), (16) as a fixed-point problem for an operator Q, which we define subsequently. The operator acts on
triplets (w, µ, ν) and shall be defined successively according to the following diagram:

Q : (w,µ, ν)
(19)
−→ c

(20)
−→ φt,L

(25)
−→ n(L, t)

(32),(28),(29),(31)
−−−−−−−−−−−−−−→ (w̃ , µ̃, ν̃). (26)

We will then prove that Q is a self-map and a contraction with respect to specific metric on a suitably defined space XT , so
that it has a fixed point, which will provide the solution of the model (11)-(16).
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3.2. Closing the cycle

In this section we prove several facts which we will need later. Our first step is to close the cycle and complete the definition of

Q, which requires passing from n(L, t), defined via (25), back to the moment functions µ, ν. At least we hope to get back to
µ, ν via a fixed-point argument. Since this is the objective of the proof, we need to give new names to the moment functions

defined via n(L, t), and we will call them µ̃, ν̃, and w̃ , and this will complete the definition of Q.
Integration of (25) with respect to L3dL is cut into two steps. Fixing t ≥ 0, we first integrate n(L, t)L3 form L = 0 to

L = z(t) = φ0,0(t) > 0, and then from L = z(t) to infinity. In order to be allowed to do this, we need integrability hypotheses

on w(L, t). We assume that w ∈ E, where E is the Banach space

E = W 1,∞u (R+ × [0, T ]) ∩ L1u(R
+ × [0, T ], L2dL) ∩ L1u(R

+ × [0, T ], L3dL).

Specifically, as indicated by the subscript u, every w ∈ E is uniformly Lipschitz continuous in the first coordinate by use of the
norm ‖w‖∞ + ‖w‖L with

‖w‖L = sup
0≤t≤T

sup
L6=L̂

|w(L, t)− w(L̂, t)|

|L− L̂|
.

Similarly, the L1u-norms are understood in the sense

‖w‖1 = sup
0≤t≤T

∫ ∞

0

|w(L, t)|L2dL <∞, |||w |||1 = sup
0≤t≤T

∫ ∞

0

|w(L, t)|L3dL <∞.

Integration of (25) with respect to L3dL then gives

µ̃(t) =

∫ ∞

0

n(L, t)L3dL

=

∫ z(t)

0

(
B(c(τ))

G(c(τ))
+

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
L3dL (27)

+

∫ ∞

z(t)

(
n0(φt,L(0)) +

∫ t

0

w(φt,L(s), s) exp

{∫ s

0

h(φt,L(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φt,L(s)) ds

)
L3dL.

In the first integral
∫ z(t)
0
we use the change of variables L→ τ = τ(t, L). That means

[0, z(t)] ∋ L 7→ τ(t, L) ∈ [0, t], dL = G(c(t))dτ.

In the second integral
∫∞
z(t)
we use the change of variables L→ ξ(t, L) := φt,L(0). Then

[z(t),∞) ∋ L 7→ ξ ∈ [0,∞), dL = dξ.

The inverse relation is L = ξ +

∫ t

0

G(c(σ))dσ = ξ + z(t). From (27) we obtain

µ̃(t) =

∫ t

0

(
B(c(τ)) +

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
L(τ)3 dτ (28)

+

∫ ∞

0

(
n0(ξ) +

∫ t

0

w(φ0,ξ(s), s) exp

{∫ s

0

h(φ0,ξ(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φ0,ξ(s)) ds

)
L(ξ)3dξ,

where L(τ) =
∫ t
τ
G(c(σ)) dσ and L(ξ) = ξ +

∫ t
0
G(c(σ)) dσ, and where we use φt,L(s) = φ0,ξ(s) in the second integral. For fixed

t the functions L 7→ τ(t, L) and τ 7→ L(τ) are inverses of each other, and similarly, L↔ ξ are in one-to-one correspondence via
the formula L = ξ −

∫ t
0
G(c(σ)) dσ. A formula similar to (28) is obtained for ν̃:

ν̃(t) =

∫ t

0

(
B(c(τ)) +

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
hp(τ)L(τ)

3 dτ (29)

+

∫ ∞

0

(
n0(ξ) +

∫ t

0

w(φ0,ξ(s), s) exp

{∫ s

0

h(φ0,ξ(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φ0,ξ(s)) ds

)
hp(ξ)L(ξ)

3dξ.

Concerning µ̃, we need to represent its derivative. Starting with

µ̃′(t) =

∫ ∞

0

∂n(L, t)

∂t
L3 dL

8 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–21
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and substituting the population balance equation (11) gives

µ̃′(t) = −

∫ ∞

0

[
G(c(t))

∂n(L, t)

∂L
+ h(L)n(L, t)− w(L, t)

]
L3dL

= 3G(c(t))

∫ ∞

0

n(L, t)L2 dL−

∫ ∞

0

h(L)n(L, t)L3 dL+

∫ ∞

0

w(L, t)L3 dL (30)

via integration by parts. Now we can substitute the expression (25) for n(L, t). Using the same strategy of integration [0, z(t)]

followed by [z(t),∞) as in (28) we obtain

µ̃′(t) = 3G(c(t))

∫ t

0

(
B(c(τ)) +

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
L(τ)2 dτ

+ 3G(c(t))

∫ ∞

0

(
n0(ξ) +

∫ t

0

w(φ0,ξ(s), s) exp

{∫ s

0

h(φ0,ξ(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φ0,ξ(s)) ds

)
L(ξ)2dξ

−

∫ t

0

h(φτ,0(t))

(
B(c(τ)) +

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
L(τ)3dτ (31)

−

∫ ∞

0

h(φt,L(t))

(
n0(ξ) +

∫ t

0

w(φ0,ξ(s), s) exp

{∫ s

0

h(φ0,ξ(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φ0,ξ(s)) ds

)
L(ξ)3dξ

+ G(c(t))

∫ t

0

w(φτ,0(t), t)L(τ)
3dτ +

∫ ∞

0

w(φ0,ξ(t), t)L(ξ)
3dξ.

This representation, which can also be obtained by a direct differentiation of (28), shows that µ̃′ is a continuous function if we

assume that n0(L) and h are continuous, and by continuity of w ∈ E.
In (28), (29) and (31) we can now substitute the expression B(c(t)) = kb(c(t)− cs)

b
+ using (18). This means the moments

µ̃, ν̃, and also µ̃′, are defined by way of the characteristics, which are by themselves defined via the original moments µ, ν,

closing the cycle.

We also need to get back to the function w(L, t). The element obtained by closing the cycle will be denoted w̃(L, t), and

the fixed-point argument will have to show w = w̃ , just as for the moments. We introduce

β(L, L̂) =

{
a(L)b(L→ L̂), if L ≥ L̂
0, else

then we can write

w̃(L̂, t) =

∫ ∞

L̂

a(L)b(L, L̂)n(L, t)dL =

∫ ∞

0

β(L, L̂)n(L, t)dL,

which is essentially like the moment integral (28), the function L3 being replaced by β(L, L̂). Applying the same technique as in

the case of (28), we obtain

w̃(L̂, t) =

∫ t

0

(
B(c(τ)) +

∫ t

τ

w(φτ,0(s), s) exp

{∫ s

τ

h(φτ,0(σ))dσ

}
ds

)
exp

(
−

∫ t

τ

h(φτ,0(s)) ds

)
β(L(τ), L̂) dτ (32)

+

∫ ∞

0

(
n0(ξ) +

∫ t

0

w(φt,L(s), s) exp

{∫ s

0

h(φt,L(σ))dσ

}
ds

)
exp

(
−

∫ t

0

h(φt,L(s)) ds

)
β(L(ξ), L̂)dξ,

which expresses w̃ in terms of (w,µ, ν). In particular, this shows continuity of w̃ . For convenience we again summarize the

construction of Q:

(w, µ, µ′, ν)
(19)
−→ c

(20)
−→ φt,L

(25)
−→ n(L, t)

(32),(28),(29),(31)
−−−−−−−−−−−−−−→ (w̃ , µ̃, µ̃′, ν̃). (33)

This means we can now represent the problem of existence and uniqueness of the solution of (11), (16) as a fixed-point problem

for (33). Note that Q as self-mapping of the Banach space E × C1[0, T ]× C[0, T ], with arguments w ∈ E, µ ∈ C1[0, T ],
ν ∈ C[0, T ].
Let us make the following assumptions: n0 is continuous, n0 ≥ 0, and

(H1)

µ0,∞ := max0≤L<∞ n0(L) < +∞, µ0,1 :=

∫ ∞

0

n0(L)dL < +∞,

µ0,2 :=

∫ ∞

0

n0(L)L
2dL < +∞, µ0,3 :=

∫ ∞

0

n0(L)L
3dL < +∞.

Lemma 3.2 Under the above hypotheses, suppose w ∈ E, µ ∈ C1[0, T ], ν ∈ C[0, T ] are given functions. Define w̃ , µ̃ and ν̃
via (32), (28), (29) using the construction in (33). Then w̃ ∈ E, µ̃ ∈ C1[0, T ] and ν̃ ∈ C[0, T ].

Proof As n0(L) is continuous by hypothesis,
∫∞
0 n0(L)L

2dL < +∞,
∫∞
0 n0(L)L

3dL < +∞ and w ∈ E, we have w̃ ∈ E.
The statement is clear for ν̃, which is represented explicitly using the right hand side of (29). The representation of µ̃′ given

by (31) shows that µ̃′ is a continuous function. Then µ̃ ∈ C1[0, T ]. �
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3.3. Setting up the space

In this section we define a space XT on which Q, defined through (33), acts as a self map and a contraction. Let us start with
some hypotheses, giving rise to suitable constants. We assume continuity of a and b and that

(H2) ‖a‖∞ := max
0≤L<∞

a(L) < +∞, ‖a‖L = sup
0≤L<L̂

∣∣∣∣
a(L)− a(L̂)

L− L̂

∣∣∣∣ <∞,

and

(H3) ‖b‖∞ := max
0≤L≤L̂

b(L̂, L) < +∞, ‖b‖L := sup
L≥0

sup
L≤L̂<ˆ̂L

∣∣∣∣∣
b(L, L̂)− b(L, ˆ̂L)

L̂− ˆ̂L

∣∣∣∣∣ <∞.

Let us now consider initial conditions. As we expect the function w ∈ E to satisfy (32), it should satisfy this at t = 0, which
leads to the initial condition w(L, 0) =

∫∞
L
a(L̂)b(L̂, L)n0(L̂)dL̂ =: wL,0 ≤ J for all L.

As µ ∈ C1[0, T ] is expected to be the moment function of n(L, t) and to coincide with µ̃, it must satisfy the initial condition
µ(0) =

∫∞
0
n0(L)L

3 dL = µ0,3, and similarly ν(0) =
∫∞
0
n0(L)hp(L)L

3 dL =: ν0,3 for ν ∈ C[0, T ]. For µ
′ we have to put

µ′(0) = 3G(c0)

∫ ∞

0

n0(L)L
2dL−

∫ ∞

0

h(L)n0(L)L
3dL+

∫ ∞

0

w(L, 0)L3dL =: µ′0,

We have

Lemma 3.3 Suppose µ, µ′, ν, w satisfy the above initial conditions. Let w̃ , µ̃, ν̃ be defined as the right hand sides of (32), (28)

and (29), µ̃′ by the right hand side of (31). Then w̃(L, 0) = wL,0, µ̃(0) = µ0,3, ν̃(0) = ν0,3, and µ̃
′(0) = µ′0.

Proof Passing to the limit t → 0+ in (28), (31), (29) and (32) shows that the initial conditions for µ̃, µ̃′ ν̃ and w̃ are satisfied.
�

In other words, the operator Q respects initial values. This suggest defining the following subset XT of E × C
1[0, T ]× C[0, T ].

XT ={(w,µ, ν) ∈ E × C
1[0, T ]× C[0, T ] : 0 ≤ w(L, t) ≤ J for all L ≥ 0 and 0 ≤ t ≤ T, |µ′(t)| ≤ K ′, 0 ≤ µ(t) ≤ K,

0 ≤ ν(t) ≤ Rpµ(t) for all 0 ≤ t ≤ T,w(L, 0) = wL,0, µ(0) = µ0,3, µ
′(0) = µ′0, ν(0) = ν0,3}.

The idea is now to adjust T > 0, and J > 0, K > 0, K ′ > 0 such that Q : XT → XT becomes a contraction. This involves two
steps. First we have to assure that Q(XT ) ⊂ XT , and then we have to prove contractibility.
To show Q(XT ) ⊂ XT , we clearly need µ0,3 < K and ν0,3 ≤ µ0,3. Notice next that 0 ≤ µ ≤ K implies

1

ǫ(t)
=

1

1− kvµ(t)
≤

1

1− kvK
,

so we would like to choose K such that kvK < 1. This is possible as long as we have

(H4) µ0,3kv < 1, cf (t) ≤ cf T := max
0≤t≤T

|cf (t)| <∞ for t ∈ [0, T ].

Notice that this is equivalent to ǫ(0) > 0, which is perfectly reasonable physically. We also make the assumption

(H5) ‖hf ,p‖∞ := max
0≤L<∞

hf ,p(L) < +∞, ‖hf ,p‖L = sup
0≤L<L̂

|hf ,p(L)− hf ,p(L̂)|

|L− L̂|
<∞,

where hf ,p stands for hf or hp. As a consequence of (H5) and (H2), the function h = (q/V )(1 + hf + hp) + a also satisfies

‖h‖∞ <∞ and ‖h‖L <∞.

Remark 2 Note that (H5) is a realistic hypothesis, but is not satisfied for the ideal high and low pass filters (2) and (3). It is

easy to extend our result to piecewise Lipschitz functions hf ,p in order to include the ideal filters formally, but in order to keep

things simple, we use (H5).

3.4. The main result

In this section we present the main result of local existence and uniqueness. Let us start by defining the complete metric. Observe

that a Banach space norm on E × C1[0, T ]× C[0, T ] is

m
 = ‖w‖L + ||w ||1 + |||w |||1 + ‖µ′‖∞ + |µ(0)| + ‖ν‖∞,
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where m = (w,µ, ν) ∈ E × C1[0, T ]× C[0, T ] and ‖w‖L = supt∈[0,T ],L6=L̂ |w(L, t)− w(L̂, t)|/|L− L̂|, ||w ||1 =

supt∈[0,T ]
∫∞
0
w(L, t)L2dL, |||w |||1 = supt∈[0,T ]

∫∞
0
w(L, t)L3dL. Since µ(0) is fixed for elements m = (w,µ, ν) ∈ XT , we

obtain a metric dist(m1, m2) on XT by

dist(m1, m2) = ‖w1 − w2‖L + ||w1 − w2||1 + |||w1 − w2|||1 + ‖µ
′
1 − µ

′
2‖∞ + ‖ν1 − ν2‖∞, (34)

where mi = (wi , µi , νi) ∈ XT , i = 1, 2. Completeness of the metric follows from closedness of XT in E × C
1[0, T ]× C[0, T ].

Theorem 3.1 Suppose (H1)− (H5) are satisfied. Then T > 0 can be chosen sufficiently small so that Q : XT → XT is a self-map
and a contraction with respect to the metric (34) on XT . Consequently, Q has a fixed point (w

∗, µ∗, ν∗) on XT .

Proof 1) Proving self-map

As a consequence of m ∈ XT we have |ǫ
′(t)| = kv |µ

′(t)| ≤ kvK
′ on [0, T ]. Using these bounds on ǫ, ǫ′, we get

c(t) ≤ cT :=

(
c0 + T

1

1− kvK

(qcf T
V
+
ρ

M
+ kvK

′
)
+ T

qρ

V M

)
exp

{
2TkvK

′

1− kvK

}
(35)

for t ∈ [0, T ]. Note that we have convergence cT → c0 as T → 0
+.

From (35) we obtain B(c(t)) ≤ kb(cT − cs)
b =: BT on [0, T ], where BT → kb(c0 − cs)

b as T → 0+. This leads to the estimate

µ̃(t) ≤

∫ t

0

BTL(τ)
3dτ +

∫ t

0

∫ t

τ

w(φτ,0(s), s)dsL(τ)
3dτ (36)

+

∫ ∞

0

n0(ξ)L(ξ)
3dξ+

∫ ∞

0

∫ t

0

w(φt,L(s), s)e

∫ s

t

h(φ0,ξ(σ))dσ
dsL(ξ)3dξ

≤ T (BTL(T )
3 + ‖w‖∞L(T )

3) + µ0,3 + e
T ‖h‖∞T |||w |||1 =: k1(T )

on [0, T ], with |||w |||1 = sup0≤t≤T
∫∞
0
w(L, t)L3dL <∞ because of w ∈ E. Therefore, k1(T )→ µ0,3 as T → 0

+. Since µ0,3 < K,

we can arrange µ̃(t) < K for all t ∈ [0, T ] by choosing T > 0 sufficiently small.
Concerning ν̃, the expressions (28) and (29) clearly imply ν̃ ≤ Rpµ̃. Now let us estimate µ̃

′. Passing to the limit in (30) and

using continuity of µ̃′, established through (31), yields

µ̃′(t)→ 3G(c0)µ0,2 −

∫ ∞

0

h(L)n0(L)L
3dL+

∫ ∞

0

w(L, 0)L3dL = µ′0

as t → 0+. Therefore, as soon as −K ′ < µ′0 < K
′, we can choose T > 0 sufficiently small to guarantee −K ′ ≤ µ̃′(t) < K ′

on [0, T ]. Finally, for w̃ we also have w̃(L, t)→ w(L, 0) = wL,0 as t → 0
+ uniformly over L ∈ [0,∞), so it suffices to choose

J > wL,0 for all L. We have to show that w̃ ∈ E, and in particular, |w̃(
ˆ̂L, t)− w̃(L̂, t)| ≤ C|ˆ̂L− L̂|. This follows from the uniform

Lipschitz property of β with respect to the second variable in hypothesis (H3). Altogether we have proved the following fact:

Suppose (H1)− (H5) are satisfied, then we can fix K > µ0 such that kvK < 1. Suppose further that −K
′ < µ′0 < K

′. Then

Q(XT ) ⊂ XT for T > 0 sufficiently small.
2) Proving contractibility

We now proceed to the core of the proof, where we show that Q is a contraction with respect to the metric (34) on XT . By
applying the Banach fixed-point principle we will then ultimately conclude.

By using the metric (34), we intend to prove dist(Q(m1),Q(m2)) ≤ γ dist(m1, m2) for some 0 < γ < 1. Letm1 = (w1, µ1, ν1),
m2 = (w2, µ2, ν2) ∈ XT . Let c1, c2 be the corresponding expressions (19). Obtain the characteristic curves φ

1
t,L, φ

2
t,L from (20).

Define N1t,L(s) = n(φ
1
t,L(s), s), and similarly N

2
t,L. Finally, define w̃1, w̃2 via formula (32), µ̃1, µ̃2 via formula (28), µ̃1

′, µ̃′2 via

(31), and ν̃1, ν̃2 via (29). We have to prove an estimate of the form ‖µ̃
′
1 − µ̃

′
2‖∞ ≤ T c dist(m1, m2) and similar ones for each

of the six norm expressions in (34). By choosing T > 0 sufficiently small, we will then get a space XT such that Q : XT → XT
is a contraction with respect to the distance (34).

(i) Estimating c1 − c2
The key to prove our contractibility estimates is of course to prove this first for the building elements, that is c1 − c2, φ

1 − φ2,
etc., as those arise in the moment expressions. We start by estimating c1 − c2.
From (19) we get a decomposition c(t) = a(t) + b(t) with

a(t) = c0 exp

{
−

∫ t

0

(
q

V
−
kvµ

′(τ)

1− kvµ(τ)

)}
(37)

b(t) =

∫ t

0

[
1

1− kvµ(τ)

[
qcf (τ)

V
+
ρ

M
− kvµ

′(τ)−
qρ

V M
(1 + kvν(τ))

]
+
qρ

V M

]
exp

{∫ τ

t

(
q

V
−
kvµ

′(s)

1− kvµ(s)

)
ds

}
dτ. (38)
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We estimate (37) and (38) separately. Let us examine (37). We have

a1(t)− a2(t) = c0 exp

(
−

∫ T

0

q

V
dτ

)[
exp

∫ t

0

kvµ
′
1(τ)

1− kvµ1(τ)
dτ − exp

∫ t

0

kvµ
′
2(τ)

1− kvµ2(τ)
dτ

]

hence |a1(t)− a2(t)| ≤ c0|e
A1(t) − eA2(t)|. Now we use the estimate |ea − eb| ≤ max{ea, eb}|a − b| to obtain

|a1(t)− a2(t)| ≤ c0max
{
eA1(t), eA2(t)

}
|A1(t)− A2(t)|.

We therefore have to estimate the maximum max{eA1 , eA2} and |A1 − A2|. We find

|A1(t)− A2(t)| ≤

∫ t

0

(
kv

1− kvµ1(τ)
|µ′1(τ)− µ

′
2(τ)|+ kv |µ

′
2(τ)|

∣∣∣∣
1

1− kvµ1(τ)
−

1

1− kvµ2(τ)

∣∣∣∣
)
dτ

≤
kv

1− kvK

∫ t

0

|µ′1(τ)− µ
′
2(τ)|dτ + kvK

′ kv

(1− kvK)2

∫ t

0

|µ1(τ)− µ2(τ)|dτ.

On [0, T ] we can estimate ‖A1 − A2‖∞ ≤ C1T‖µ
′
1 − µ

′
2‖∞ for a certain C1 > 0, using ‖µ1 − µ2‖∞ ≤ TC2‖µ

′
1 − µ

′
2‖∞ for a

certain C2. Moreover, concerning the maximum, we have

|Ai(t)| ≤ t
kvK

1− kvK
.

Altogether, we have therefore proved an estimate of the form ‖a1 − a2‖∞ ≤ c0e
T kv K′

1−kv K C1T‖µ
′
1 − µ

′
2‖∞. For the second term

(38) we have

b1(t)− b2(t) =

∫ t

0

e−(q/V )(t−τ)b̃1(τ)

[
exp

∫ τ

t

−
kvµ

′
1(s)

1− kvµ1(s)
ds − exp

∫ τ

t

−
kvµ

′
2(s)

1− kvµ2(s)
ds

]
dτ

+

∫ t

0

e−(q/V )(t−τ) exp

∫ τ

t

−
kvµ

′
2(s)

1− kvµ2(s)
ds · (b̃1(τ)− b̃2(τ))dτ,

where b̃i(t) =
1

1−kvµi (t)

[
qcf (t)
V + ρ

M − kvµ
′
i(t)−

qρ
V M (1 + kvνi(t))

]
+ qρ
V M . Now for t ∈ [0, T ],

|b̃i(t)| ≤
1

1− kvK

[qcf T
V
+
ρ

M
+
qρ

V M
kvK

]
+
qρ

V M
=: C3.

Put Bi(t, τ) =
∫ t
τ

kvµ′i (s)

1−kvµi (s)
ds, then |Bi(t, τ)| ≤

kvK
1−kvK

(t − τ) for 0 ≤ τ ≤ t. Then b1 − b2 can be estimated as

|b1(t)− b2(t)| =

∣∣∣∣
∫ t

0

e−(q/V )(t−τ)b̃1(τ)
(
eB1(t,τ) − eB2(t,τ)

)
dτ +

∫ t

0

e−(q/V )(t−τ)eB2(t,τ)
(
b̃1(τ)− b̃2(τ)

)
dτ

∣∣∣∣

≤ C3

∫ t

0

∣∣∣eB1(t,τ) − eB2(t,τ)
∣∣∣ dτ + et

kv K
1−kv K

∫ t

0

|b̃1(τ)− b̃2(τ)|dτ

≤ C3e
tkvK/(1−kvK)

∫ t

0

|B1(t, τ)− B2(t, τ)|dτ + e
t kv K1−kv K

∫ t

0

∣∣∣b̃1(τ)− b̃2(τ)
∣∣∣ dτ.

Finally,

|B1(t, τ)− B2(t, τ)| ≤

∫ t

τ

kv

1− kvK
|µ′1(s)− µ

′
2(s)|ds +

∫ t

τ

kvK

∣∣∣∣
1

1− kvµ1(s)
−

1

1− kvµ2(s)

∣∣∣∣ ds

≤ (t − τ)
kv

1− kvK
‖µ′1 − µ

′
2‖∞ + (t − τ)

k2vK

(1− kvK)2
‖µ1 − µ2‖∞

≤ (t − τ)

[
kv

1− kvK
+ tC2

k2vK

(1− kvK)2

]
‖µ′1 − µ

′
2‖∞.

Integrating gives
∫ t
0
|B1(t, τ)− B2(t, τ)|dτ ≤ C3tt

2‖µ′1 − µ
′
2‖∞, where C3t → kv/(1− kvK) as t → 0

+. Now

|b̃1(t)− b̃2(t)| =
1

1− kvµ1(t)

[
qcf (t)

V
+
ρ

M
− kvµ

′
1(t)−

qρ

V M
(1 + kvν1(t))

]

−
1

1− kvµ2(t)

[
qcf (t)

V
+
ρ

M
− kvµ

′
2(t)−

qρ

V M
(1 + kvν2(t))

]

=

[
qcf (t)

V
+
ρ

M
−
qρ

V M

](
1

1− kvµ1(t)
−

1

1− kvµ2(t)

)

+

[
kv

1− kvµ1(t)
µ′1(t)−

kv

1− kvµ2(t)
µ′2(t)

]
−
qρ

V M

[
kv

1− kvµ1(t)
ν1(t)−

kv

1− kvµ2(t)
ν2(t)

]

=: I1(t) + I2(t) + I3(t).
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Here we estimate

|I1(t)| =

∣∣∣∣
[
qcf (t)

V
+
ρ

M
−
qρ

V M

](
1

1− kvµ1(t)
−

1

1− kvµ2(t)

)∣∣∣∣

≤

[
qcf T

V
+
ρ

M
−
qρ

V M

]
kv

1− kvK
2 |µ1(t)− µ2(t)|

≤

[
qcf T

V
+
ρ

M
−
qρ

V M

]
kv

1− kvK
2 TC2||µ

′
1 − µ

′
2||∞.

Using the same estimation as for |A1(t)− A1(t)|, we obtain

|I2(t)| =

∣∣∣∣
kv

1− kvµ1(t)
µ′1(t)−

kv

1− kvµ2(t)
µ′2(t)

∣∣∣∣ ≤ C1||µ
′
1 − µ

′
2||∞.

Next we have

|I3(t)| =
qρ

V M

∣∣∣∣
kv

1− kvµ1(t)
ν1(t)−

kv

1− kvµ2(t)
ν2(t)

∣∣∣∣

=
qρ

V M

∣∣∣∣
kv

1− kvµ1(t)
(ν1(t)− ν2(t))− kvν2(t)

(
kv

1− kvµ2(t)
−

kv

1− kvµ1(t)

)∣∣∣∣

≤
qρ

V M

kv

1− kvµ1(t)
||ν1 − ν2||∞ +

kvK

(1− kvK)2
||µ1 − µ2||∞

≤
qρ

V M

kv

1− kvµ1(t)
||ν1 − ν2||∞ +

kvK

(1− kvK)2
TC2||µ

′
1 − µ

′
2||∞.

These estimates give us

||b̃1(t)− b̃2(t)||∞ ≤

[(
qcf T

V
+
ρ

M
−
qρ

V M

)
kv

1− kvK
2 TC2 + C1 +

kvK

(1− kvK)2
TC2

]
||µ′1 − µ

′
2||∞

+
qρ

V M

kv

1− kvµ1(t)
||ν1 − ν2||∞ ≤ C5||µ

′
1 − µ

′
2||∞ + C6||ν1 − ν2||∞,

hence

||b1 − b2||∞ ≤
(
et

kv K
1−kv K C3tt

2 + C5e
t kv K1−kv K

)
T‖µ′1 − µ

′
2‖∞ + e

t kv K1−kv K C6T ||ν1 − ν2||∞.

By the previous estimates we obtain

||c1 − c2||∞ ≤ e
TkvK/(1−kvK)

(
C3tT

2C3 + C5 + c0C1
)
T‖µ′1 − µ

′
2‖∞ + e

t kv K1−kv K C6T ||ν1 − ν2||∞

≤ C7T‖µ
′
1 − µ

′
2‖∞ + C8T ||ν1 − ν2||∞,

which establishes the desired contraction estimates for c1 − c2. Naturally, we also get estimates for G(c1)− G(c2) and
B(c1)− B(c2), which are

||G(c1)− G(c2)||∞ ≤ kg ||c1 − c2||∞ ≤ kgC7T‖µ
′
1 − µ

′
2‖∞ + kgC8T ||ν1 − ν2||∞ (39)

and

||B(c1)− B(c2)||∞ ≤ 2kbCT (1 + CT )T ||c1 − c2||∞

≤ 2kbCT (1 + CT )C7T‖µ
′
1 − µ

′
2‖∞ + 2kbCT (1 + CT )C8T ||ν1 − ν2||∞. (40)

(ii) Estimating characteristics φ1 − φ2

From (39) we readily get an estimate for characteristics. Putting φit0,L0(t) = L0 +
∫ t
t0
G(ci(τ)) dτ , i = 1, 2, we have

∣∣φ1t0 ,L0(t)− φ
2
t0,L0(t)

∣∣ ≤
∫ t

t0

|G(c1(τ))− G(c2(τ))| dτ ≤ |t − t0|‖G(c1)− G(c2)‖∞ ≤ |t − t0|C9
m1 −m2

.

That means

∣∣φ1t0,L0(t)− φ
2
t0,L0(t)

∣∣ ≤ C9T
m1 −m2

 (41)

for all t0, t ∈ [0, T ] and every L0. The estimate (39) for G(c1)− G(c2) also leads to immediate estimates for L(τ) and L(ξ),
namely

|L1(τ)− L2(τ)| ≤

∫ t

τ

|G(c1(σ))− G(c2(σ))|dσ ≤ T ||G(c1)− G(c2)||∞ (42)
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|L1(ξ)− L2(ξ)| ≤

∫ t

0

|G(c1(σ))− G(c2(σ))|dσ ≤ T ||G(c1)− G(c2)||∞. (43)

(iii) Estimating µ̃′1 − µ̃
′
2

Formula (31) decomposes into a sum of 6 expressions µ̃′(t) = A(t) + B(t) + · · ·+ F (t), and we estimate A1(t)−
A2(t), . . . , F1(t)− F2(t) separately. Writing A(t) = 3G(ci(t))

∫ t
0
I(t, τ)dτ with the obvious meaning of I(t, τ) in (31), we

have

A1(t)− A2(t) = 3G(c1(t))

∫ t

0

I1(t, τ)dτ − 3G(c2(t))

∫ t

0

I2(t, τ)dτ,

= 3 [G(c1(t)− G(c2(t))]

∫ t

0

I1(t, τ) dτ + G(c2(t))

∫ t

0

[I1(t, τ)− I2(t, τ)] dτ.

By (39) and boundedness of
∫ t
0
I1(t, τ) dτ , the first term on the right is bounded by C‖G(c1(t))− G(c2(t))‖∞ ≤ C

′T
m1 −

m2
. Similarly, in the second term on the right we use boundedness of G(c2(t)), which leaves us to estimate the expression∫ t
0
[I1(t, τ)− I2(t, τ)] dτ . Now I(t, τ) can be decomposed as I(t, τ) =

(
B(c(τ))L(τ)2 +N (t, τ)

)
M(t, τ). That means,

suppressing arguments and writing B = B(c)L(τ)2 for simplicity

I1 − I2 = (B1 +N1) [M1 −M2] + [B1 −B2 +N1 −N2]M2.

Then it suffices to estimate the terms B1 − B2, N1 −N2 andM1 −M2 separately, and use this in tandem with boundedness

of B,M,N over the set t, τ ∈ [0, T ]. While estimate B1 − B2 is handled using (40) and (42), we consider

M1(t, τ)−M2(t, τ) = exp

(
−

∫ t

τ

h(φ1τ,0(σ))dσ

)
L1(τ)

2 − exp

(
−

∫ t

τ

h(φ2τ,0(σ))dσ

)
L2(τ)

2

= exp

(
−

∫ t

τ

h(φ1τ,0(σ))dσ

) [
L1(τ)

2 − L2(τ)
2
]

+

[
exp

(
−

∫ t

τ

h(φ1τ,0(σ))dσ

)
− exp

(
−

∫ t

τ

h(φ2τ,0(σ))dσ

)]
L2(τ)

2.

Here the first line uses (42), while the second line uses |e−a − e−b| ≤ |a − b| for a, b > 0 and

∫ t

τ

h(φ1τ,0(σ))− h(φ
2
τ,0(σ))dσ ≤ lip(h)

∫ t

τ

|φτ,0(σ)− φτ,0(σ)|dσ ≤ lip(h)T
2C9
m1 −m2



where we assume that h is globally Lipschitz continuous on [0,∞) with constant lip(h). Now we use (41) to conclude that
|A1(t)− A2(t)| ≤ CT

m1 −m2
 as claimed. For the term B1(t)− B2(t) we decompose B(t) = 3G(c(t))

∫∞
0
J (t, ξ)dξ, with

J (t, ξ) = (n0(ξ) +K(τ, ξ)E(t, ξ))L(ξ)
3, then

B1(t)− B2(t) = 3G(c1(t))

∫ ∞

0

[J1(t, ξ)− J2(t, ξ)] dξ + 3 [G(c1(t))− G(c2(t))]

∫ ∞

0

J2(t, ξ)dξ,

so we have to show boundedness of
∫∞
0
J2(t, ξ)dξ over t ∈ [0, T ], and a Lipschitz estimate for the expression∫∞

0
[J1(t, ξ)− J2(t, ξ)] dξ. Boundedness requires

∫∞
0
n0(ξ)L(ξ)

2dξ <∞, and also sup0≤t≤T
∫∞
0
wi(L, t)L

2dL <∞, which is
clear since w1, w2 ∈ E. Now we concentrate on the Lipschitz estimate, where we have

∫ ∞

0

[J1(t, ξ)− J2(t, ξ)] dξ =

∫ ∞

0

[K1(t, ξ)E1(t, ξ)−K2(t, ξ)E2(t, ξ)]L(ξ)
2dξ

=

∫ ∞

0

K1(t, ξ) [E1(t, ξ)− E2(t, ξ)]L(ξ)
2dξ +

∫ ∞

0

E2(t, ξ) [K1(t, ξ)−K2(t, ξ)]L(ξ)
2dξ.

Here the first term uses E1(t, ξ)− E2(t, ξ) = exp
(
−
∫ t
0
h(φ10,ξ(s))ds

)
− exp

(
−
∫ t
0
h(φ20,ξ(s))ds

)
, which is readily treated using

(41) and the hypothesis that h is globally Lipschitz continuous. The second term requires estimation of

K1(t, ξ)−K2(t, ξ) =

∫ t

0

w1(φ
1
0,ξ(s), s) exp

{∫ s

0

h(φ10,ξ(σ)dσ

}
− w2(φ

2
0,ξ(s), s) exp

{∫ s

0

h(φ20,ξ(σ)dσ

}
ds,

which uses (41) in tandem with Lipschitz continuity of h and a uniform Lipschitz estimate |w(L, t)− w(L̂, t)| ≤ ‖w‖L|L− L̂|
on t ∈ [0, T ]. Estimation of the third and fourth block in (31), that is C1 − C2 and D1 −D2, follows the same lines. From
the last line in (31) we get the remaining two terms E1 − E2 and F1 − F2, which are estimated in much the same way as the
corresponding w1 − w2 terms in the expression B1 − B2. We need once again the Lipschitz property of wi in the first coordinate,
and moreover, max0≤t≤T

∫∞
0 w(L, t)L

3dL <∞, which is guaranteed by wi ∈ E. This concludes the estimation of µ̃1 − µ̃2.

14 Copyright c© 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014, 00 1–21

Prepared using mmaauth.cls



A. Rachah, D. Noll, F. Espitalier, F. Baillon

Mathematical
Methods in the
Applied Sciences

(iv) Estimating the remaining terms

We have to estimate in much the same way the expressions ν̃1 − ν̃2 and w̃1 − w̃2. The first expression clearly follows the same
line as in the previous section, now based on (28), while the second estimate uses (32). Naturally, for w̃1 − w̃2 we have to repeat
this three times for the different norms involved, the principle being the same.

Altogether, we have shown that Q : XT → XT is a contraction with respect to the metric (34) on XT . Consequently, Q has
a fixed point (w ∗, µ∗, ν∗). �

It is now clear from inspecting (33) that c∗, defined through (19), and n∗, defined through (25), are solutions of the crystallizer

model (11) – (16) on [0, T ].

4. Global existence of solutions

In this section we investigate the existence of global solutions. Recall that our model assumes that the mass of solvent is

invariant, which includes the case of batch crystallization, or the continuous mode. Since the molar masses of solids and liquid of

the constituent are assumed equal, as is the case in KCl-crystallization used in our simulation study, the total mass of constituent

msolute +msolid is also constant. This gives the lower bound

ǫ(t) ≥
Vsolvent
V

> 0 (44)

for the void fraction ǫ(t) at all times t. Using (52) and the above mass conservation of constituent, we have

V ǫcM ≤ V ǫ0c0M +msolid(0),

which by (44) gives the upper bound

c(t) ≤
ǫ0c0

ǫ(t)
+
msolid(0)

V Mǫ(t)
≤
V ǫ0c0

Vsolvent
+
msolid,0
VsolventM

=: c∞.

Since c(t) > cs , we deduce that c(t) is bounded.

Theorem 4.1 Suppose the total volume of slurry V and the total mass of the constituent are held constant during the process.

Then the crystallizer model (11) – (16) has a global solution.

Proof 1) The proof of the local existence theorem shows that for initial data c0 > cs and n0(L) there exists times T > 0 small

enough such that Q : XT → XT is a contraction with respect to the distance (34). As the construction only depends on the
norm ‖n0(L)‖1 of the initial seed, we may define T1/2(c0, ν0) as the largest T > 0 such that for initial data cs < c(0) ≤ c0 and
‖n0‖1 ≤ ν0, we have dist(Q(m1),Q(m2)) ≤

1
2
dist(m1, m2). In particular, the solution c(t), n(L, t) of (11) – (16) is guaranteed

to exist at least on the interval [0, T1/2(c(0), ‖n0(·)‖1)].
As a consequence of the above, if we let ℓ(c0, ‖n0‖1, T ) be the Lipschitz constant of Q on XT with initial data c0 and n0(L),

then by construction ℓ
(
c0, ‖n0‖1, T1/2(c0, ‖n0‖1)

)
= 1
2 .

2) Using the boundedness of c(t), there exist constants G0, B0 such that G(c(t)) ≤ G0 and B(c(t))/G(c(t)) ≤ B0. Now let
ñ(L, t) be the solution of (11) with constant speed of growth G0 and constant birth rate n(0, t) = B0. Then n(L, t) ≤ ñ(L, t)
on any finite interval of existence of the solution n(L, t). Indeed, ñ is the solution of a linear population balance equation which

exists on any finite interval. Moreover, since in the model for ñ more crystals nucleate and the speed of growth is faster, while

breakage, fines dissolution and product removal are treated the same way, the linear model has a larger number of crystals at all

sizes L.

3) Let us define ñ(T ) = supt≤T
∫∞
0
ñ(L, t)dL, then ‖n(·, t)‖1 ≤ ñ(T ) for all L and all t ≤ T as long as n(L, t) exists on

[0, T ]. Now fix T ∗ > 0. We will prove that the solutions c(t) and n(L, t) exist on [0, T ∗]. Put T1/2 := T1/2(c∞, ñ(T
∗)). Then

the solution c(t), n(L, t) exist on [0, T1/2]. If T1/2 ≥ T
∗ we are done, so suppose T1/2 < T

∗.

In order to extend the solution further to the right, we take c(T1/2) and n(·, T1/2) as new initial data. Since c(T1/2) ≤ c∞ and
‖n(·, T1/2)‖1 ≤ ñ(T1/2) ≤ ñ(T

∗), the new initial data are still bounded by c∞ and ñ(T
∗). That means, the new solution will exist

at least on [0, T1/2] with T1/2 = T1/2(c∞, ñ(T
∗)) the same as before. Patching together, we have now existence of a solution of

(11) – (16) on [0, 2T1/2]. If 2T1/2 ≥ T
∗ we are done, otherwise we use c(2T1/2) and n(L, 2T1/2) as new initial data. Then we

still have c(2T1/2) ≤ c∞ and ‖n(·, 2T1/2)‖1 ≤ ñ(2T1/2) ≤ ñ(T
∗), so we have the same bound as before, and the local existence

proof will again work at least on [0, T1/2]. After a finite number of steps we reach T
∗, which proves that the solution exists on

[0, T ∗]. �

Remark 3 Since G(c) and B(c) are only locally Lipschitz functions in general, we should not expect global existence of solutions

in all cases. For instance, in evaporation crystallization the solvent mass is driven to 0 in finite time T , which leads to c(t)→∞
as t → T , even though the mass of constituent may remain bounded.
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5. Numerical tests

In this section we present a numerical simulation for the continuous crystallizer in steady state with fines dissolution, product

classification, and negligible attrition. This case is instructive as it shows that the system has a one-parameter family of possible

steady states, which are oscillatory or even unstable and in practice need feedback control. See e.g. [1, 5]. A second interest in

this study lies in the fact that in this case an explicit solution can be computed, which allows to validate the numerical scheme.

The population and mole balance equations at the equilibrium (css , nss(L)) are maintained through the steady-state feed

concentration cf ss , where css and nss(L) are respectively the corresponding steady state values for solute c(t) and CSD n(L, t).

For fixed css , the population balance equation has a unique solution nss

nss(L) = nss(0) exp

{
−

q

V kg(css − cs)

∫ L

0

hf+p(l)dl

}
(45)

where nss(0) =
B(css)

G(css)
. Then we obtain

nss(L) =
B(css)

G(css)





exp

{
−

q

V kg(css − cs)
(1 + Rf )L

}
0 ≤ L < Lf

exp

{
−

q

V kg(css − cs)
(Rf Lf + L)

}
Lf ≤ L < Lp

exp

{
−

q

V kg(css − cs)
(Rf Lf − RpLp + (1 + Rp)L)

}
Lp ≤ L

(46)

with

ǫss = 1− kv

∫ ∞

0

nss(L)L
3dL

and

ηss = kv

∫ ∞

Lp

nss(L)L
3dL,

which as we realize are both functions of css alone. Our fundings are

∫ ∞

0

nss(L)L
3dL = I1 + I2 + I3,

∫ ∞

0

nss(L)L
3dL = I3

where

I1 =
kb
kg
(css − cs)

3

∫ Lf

0

e−aLL3dL

=
kb
kg
(css − cs)

3

(
e−aLf

(
−
L3f
a
−
3L2f
a2
−
6Lf
a3
−
6

a4

)
+
6

a4

)

with

a =
q

V kg(css − cs)
(1 + R1)

and

I2 =
kb
kg
(css − cs)

3e
− q
V kg (css−cs )

∫ Lp

Lf

e−bLL3dL

=
kb
kg
(css − cs)

3e
− q
V kg (css−cs )

(
e−bLp

(
−
L3p
b
−
3L2p
b2
−
6Lp
b3
−
6

b4

)

+ e−bLf
(
L3p
b
+
3L2p
b2
+
6Lp
b3
+
6

b4

))

with

b =
q

V kg(css − cs)

and

I3 =
kb
kg
(css − cs)

3e
− q
V kg (css−cs )

(R1Lf −R2Lp)
∫ ∞

Lp

e−cLL3dL

=
kb
kg
(css − cs)

3e
− q
V kg (css−cs )

(R1Lf −R2Lp)e−cLp
(
L3p
c
+
3L2p
c2
+
6Lp
c3
+
6

c4

)
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with

c =
q

V kg(css − cs)
(1 + R2).

Now we have to substitute these numbers in the steady state mole balance equation,
dc(t)

dt
= 0,

dǫ(t)

dt
= 0. This gives

cf ss = ρ (1 + R2ηss)− (ρ−Mcss)ǫss . (47)

This means that for a given steady state concentration, css , there exists a unique possible steady state feed concentration cf ss .

Of course there are limiting values, determined by the constraint 0 ≤ ǫss ≤ 1. In fact, the case css = cs gives nss = 0, ǫss = 1,
so no crystal production at all. This correspond to the feed cf ss = css = cs . In the other end, the limiting case ǫss = 0 means no

liquid left, everything is crystal.

For the simulation, we use the finite difference upwind scheme [30]. We then transform the system into an ODE system and

run an ODE solver. A simulation of the nonlinear model is shown in figure 2. For visualization we use the mass density function

m(L, t) = ρkvn(L, t)L
3 and the number density function n(L, t) representing the crystal size distribution. The feed concentration

is kept constant at cf ss = 4.4 mol/l . The corresponding steady state value for solute concentration c(t) is css = 4.091 mol/l .

0 5 10 15 20 25 30 35 40 45 50
4.086

4.088

4.09

4.092

4.094

4.096

4.098

t [h]

C
 [m

ol
/l]

Figure 2. Simulation of continuous crystallizer with fines dissolution, product removal, and negligible attrition at steady state. Solute concentration (left), mass

density m(L, t) = ρkvn(L, t)L3 (right) and number density function n(L, t) (at the bottom) show sustained oscillations and even instability, which may degrade

product quality.

6. Discussion and conclusion

We have derived a mathematical model of a mixed suspension mixed product removal crystallizer based on population and mass

balance equations. Consistency of the model was shown by proving local existence and uniqueness of solutions using the method

of characteristics. Global existence of solutions for continuous and batch mode was also established using a prior bound on

the solute concentration derived from physically meaningful conditions. Our method of proof indicates that when growth rate
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G(c) and nucleation rate B(c) are only locally Lipschitz functions, we should not expect global existence of solutions as a rule.

The complexity of the continuous crystallization mode with fines dissolution, classified product and breakage dependent on the

Lipschitz behavior of growth and birth rates is a novel aspect of our study compared to models discussed in mathematical biology

[17, 15, 20]. Our work contributes the first complete mathematical study of crystallization based on a model including population,

molar balances and breakage phenomenon. We have also presented numerical simulations of the continuous crystallizer in steady

state. The result of a simulation study of continuous crystallizer in steady state shows that feedback control is needed to avoid

oscillations that may degrade product quality.

Appendix

In this appendix, we give details how the mole balance equation is obtained by investigating the mass balance within the

crystallizer. The total mass m of the suspension in the crystallizer is decomposed as

m = mliquid +msolid = msolvent +msolute +msolid. (48)

In this study we consider non-solvated crystallization, where solute molecules transit directly into solid state without integrating

(or capturing) solvent molecules. We therefore have

ṁ+solvent = ṁ
−
solvent. (49)

In batch mode q = 0 the total mass is preserved, dmdt = 0, and the system is closed. We will then obtain the relation
dmsolute
dt = − dmsoliddt . In continuous or semi-batch mode this equation has to be completed by external sources and sinks. Using

(49) this takes the form

dm

dt
=
dmsolute
dt

+
dmsolid
dt

= ṁ+solute − ṁ
−
solute + ṁ

+
solid − ṁ

−
solid. (50)

We will now have to relate this equation to the population balance equation (1). In analogy with (48) we decompose the total

volume V of the suspension as V = Vliquid + Vsolid = Vsolute + Vsolvent + Vsolid. The liquid section is the dimensionless quantity

ε =
Vliquid
V
= 1−

Vsolid
V
. (51)

A natural physical quantity to describe the solute population is the molar concentration of solute cm =
Vsolute
V

ρ
M , which quantifies

the amount of the solute constituent per volume of the suspension. Here ρ := ρsolute = ρsolid is the density of solute, and by

assumption also the crystal density, M is the molar mass of the constituent, V the total volume of the suspension, and Vsolute
is the volume of solute in the suspension. The unit of cm is [mol/ℓ].This allows us now to introduce the molar concentration

of solute in the liquid phase c = ε−1cm =
Vsolute
Vliquid

ρ
M
, whose dimension is again [mol/ℓ]. This quantity leads to a more complicated

form of the mole balance equation, but its use is dictated by the fact that growth term in the population balance (1) depends

on c and not directly on cm. We deduce the relation

msolute = V εcM. (52)

Since we consider the total volume V of the suspension as constant, we obtain the formula

dmsolute
dt

=
d(V εcM)

dt
= V
dε

dt
cM + V ε

dc

dt
M. (53)

Let us now get back to (50). We start by developing the expressions on the right hand side. Decomposing ṁ±solid =

ṁ±fines + ṁ
±
product + ṁ

±
general, we have ṁ

+
fines + ṁ

+
product + ṁ

+
general = 0, meaning that we do not add crystals during the process.

For crystal removal we have

ṁ−product = qkvρ

∫ ∞

0

hp(L)n(L, t)L
3dL,

which means that crystals of size L are filtered with a certain probability hp(L) governed by the product classification function.

Similarly, fines are removed according to

ṁ−fines = qkvρ

∫ ∞

0

hf (L)n(L, t)L
3dL

where hf (L) is the fines removal filter profile.

The term ṁ−general = qkvρ
∫∞
0
n(L, t)L3 dL corresponds to a size indifferent removal of particles caused by the flow with rate

q. The external terms for solute include ṁ−solute =
q
V msolute, meaning that due to the flow with rate q a portion of the solute mass

is lost.
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In the input we have ṁ+solute = qcfM + ṁ
−
fines, where qcfM means solute feed and is a control input. The second term ṁ

−
fines

means that the mass which is subtracted from msolid in the dissolution phase is recycled and added to msolute. Altogether, fines

therefore do not alter the mass balance. We now have related the dotted expressions to quantities used in the population balance

equation.

Our next step is to relate the internal dynamics of the mass balance to the population balance equation. We start by noting

that msolid(t) = kvρV
∫∞
0
n(L, t)L3 dL. Differentiating with respect to time and substituting the integrated right hand side of

the population balance equation
∫∞
0
{. . . }L3dL in (1) gives

dmsolid(t)

dt
= kvρV

∫ ∞

0

∂n(L, t)

∂t
L3dL

= −kvρV G(c(t))

∫ ∞

0

∂n(L, t)

∂L
L3dL− kvρq

∫ ∞

0

(1 + hf (L) + hp(L)) n(L, t)L
3 dL (54)

= 3kvV ρG(c(t))

∫ ∞

0

n(L, t)L2 dL− kvρq

∫ ∞

0

(1 + hf (L) + hp(L)) n(L, t)L
3 dL,

where the third line uses integration by parts and also the fact that breakage conserves mass at all times
∫ ∞

0

(
Q+break(L, t)−Q

−
break(L, t)

)
L3dL = 0,

so that integrated terms related to breakage cancel. Altogether, equation (50) becomes

d(V ǫcM)

dt
+ 3kvρV G(c(t))

∫ ∞

0

n(L, t)L2 dL− kvρq

∫ ∞

0

(1 + hf (L) + hp(L)) n(L, t)L
3 dL

= −
q

V
V ǫcM + qcf (t)M − qkvρ

∫ ∞

0

(1 + hp(L))n(L, t)L
3dL.

Subtracting the term qkvρ
∫∞
0
(1 + hp(L))n(L, t)L

3dL on both sides gives

d(V εcM)

dt
= qcfM − qcεM − 3V kvρG(c(t))

∫ ∞

0

n(L, t)L2dL+ qkvρ

∫ ∞

0

hf (L)n(L, t)L
3dL, (55)

where cf (t) is the feed concentration and ε(t) is the void fraction (51), which takes the form

ε(t) = 1− kv

∫ ∞

0

n(L, t)L3dL, (56)

where kv is the volume shape factor of crystals (see Table 1).

Differentiating (56) with respect to time t yields

dε(t)

dt
= −kv

∫ ∞

0

∂n(L, t)

∂t
L3dL. (57)

By substituting the population balance Eq.(1) in first step and using the partial integration in second step, the temporal variation

of the liquid fraction is

dε(t)

dt
= kvG(c(t))

∫ ∞

0

∂n(L, t)

∂L
L3dL+

q

V
kv

∫ ∞

0

(1 + hf (L) + hp(L))n(L, t)L
3dL

= −3kvG(c(t))

∫ ∞

0

n(L, t)L2dL+
q

V
kv

∫ ∞

0

(1 + hf (L) + hp(L))n(L, t)L
3dL. (58)

Solving (58) for 3kvG(c(t))
∫∞
0
n(L, t)L2dL and multiplying by ρ, the mass balance of the solute in the liquid in (55) simplifies

to

d(V εcM)

dt
= qcfM − qcεM + V ρ

dε

dt
− qρkv

∫ ∞

0

(1 + hp(L))n(L, t)L
3dL. (59)

Finally, using (53), equation (59) is transformed to

M
dc(t)

dt
=
q(ρ−Mc(t))

V
+
ρ−Mc(t)

ε(t)

dε(t)

dt
+
qcf (t)M

V ε(t)
−
qρ

V ε(t)

(
ε(t) + kv

∫ ∞

0

(1 + hp(L))n(L, t)L
3dL

)
. (60)

By substituting (56) into the last term of the right hand side in this last equation, the mass balance of the solute in the liquid

phase is finally obtained as

M
dc

dt
=
q(ρ−Mc)

V
+
ρ−Mc

ε

dε

dt
+
qcfM

V ε
−
qρ

V ε
(1 + kvν(t)) (61)
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with

ν(t) =

∫ ∞

0

hp(L)n(L, t)L
3dL. (62)

This is now equation (10) in the text, which is thereby justified. We shall assume 0 ≤ hp(L) ≤ Rp for all L, so that ν(t) ≤ Rpµ(t)
for all t. In the case where hp in Eq.(62) is an ideal high pass filter, we obtain

ν(t) = Rp

∫ ∞

Lp

n(L, t)L3dL. (63)
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