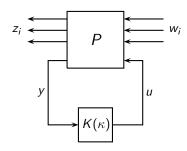
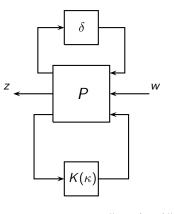
Computing the structured distance to instability

Dominikus Noll

Université de Toulouse

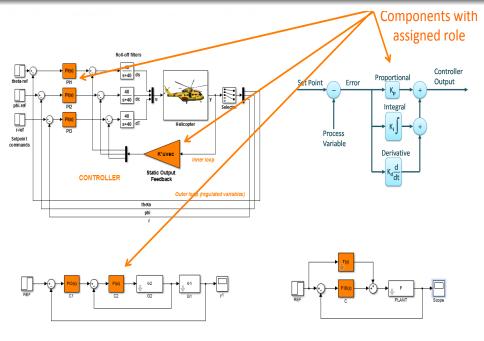
Joint work with: Pierre Apkarian (ONERA) Laleh Ravanbod (IMT) Minh Ngoc Dao (UBC) Nominal versus parametric robust controller synthesis





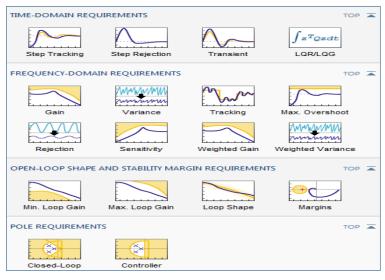
minimize $\|T_{w_i z_i}(\kappa)\|_{\infty}$ subject to $K(\kappa)$ stabilizing $\kappa \in \mathbb{R}^n$ $\begin{array}{ll} \text{minimize} & \max_{\delta \in [-1,1]^m} \| T_{wz}(\kappa,\delta) \|_{\infty} \\ \text{subject to} & \mathcal{K}(\kappa) \text{ stab. } \delta \in [-1,1]^m \\ & \kappa \in \mathbb{R}^n \end{array}$

Structured versus full-order controllers



Why robust control?

- 1968 Kalman filter (LQG control) used in Apollo mission
- Late 1970s failure of LQG-control
- Early 1980s H_{∞} -problem posed (Zames, Helton, Tannenbaum)
- 1989 Doyle, Glover, Khargonekar, Francis \implies unstructured controllers
- 2006 Apkarian, Noll \implies structured controllers
- 2010 hinfstruct in Robust Control Toolbox (Apkarian, Noll, Gahinet)
- 2012 systume (Apkarian, Noll, Gahinet)



Tuning Goals

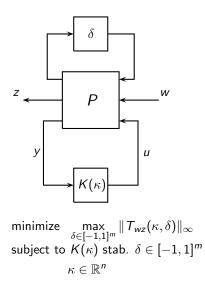
New approach adopted by leading industry

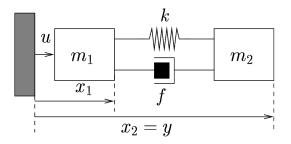
- Airbus Transportation Aircraft
- Airbus Defence & Space (Rosetta mission)
- Dassault Aviation
- Boeing
- Sagem
- CEA Robotics

Used for teaching by academia

- Caltech
- MIT
- Supelec
- Supaero (ISEA)

Back to parametric robustness

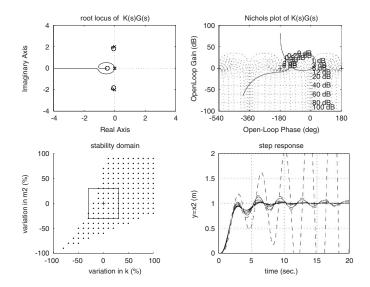


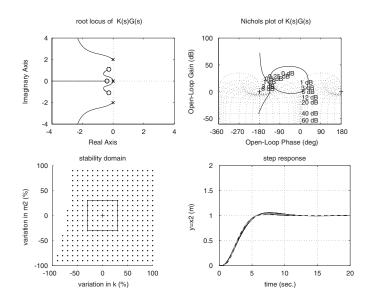


$$m_1 \ddot{x}_1 = -kx_1 + kx_2 - f\dot{x}_1 + f\dot{x}_2 + u$$

$$m_2 \ddot{x}_2 = kx_1 - kx_2 + f\dot{x}_1 - f\dot{x}_2$$

 $k = k^{\text{nom}} + \delta_k \cdot 30\% k^{\text{nom}}$ $m_2 = m_2^{\text{nom}} + \delta_{m_2} 30\% m_2^{\text{nom}}.$





Observe :

- First controller nominally stable, but not robustly stable over parameter variation square (lower left). Step responses show sustained oscillations (lower right).
- Second controller stable over parameter square.
- But how to synthesize such robustly stable controllers?

Synthesis as semi-infinite min-max program

Nominal H_{∞} -synthesis as semi-infinite minimization

$$\min_{\kappa} ||T_{wz}(\kappa)||_{\infty} \qquad z \leftarrow P \qquad \psi \\ \min_{\kappa} \max_{\omega \in [0,\infty]} \overline{\sigma} (T_{wz}(\kappa, j\omega)) \qquad y \leftarrow K \qquad \psi \\ \min_{\kappa} \max_{\omega \in [0,\infty]} \max_{\||x\|_2=1} ||T_{wz}(\kappa, j\omega)x||_2 \\ (\sum_{\substack{k \in [0,\infty] \\ min \leftarrow K \\ min \in [0,\infty] \\ min \leftarrow K \\ min \leftarrow$$

Parametric robust H_{∞} -synthesis as semi-infinite program

$$\min_{\kappa} \max_{\substack{\delta \in [-1,1]^{m} \\ \kappa}} \| T_{wz}(\delta,\kappa) \|_{\infty}$$

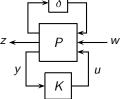
$$\min_{\kappa} \max_{\substack{\delta \in [-1,1]^{m} \\ \omega \in [0,\infty]}} \overline{\sigma} \left(T_{wz}(\delta,\kappa,j\omega) \right)$$

$$y$$

$$\min_{\kappa} \max_{\substack{\delta \in [-1,1]^{m} \\ \omega \in [0,\infty]}} \max_{\substack{\|x\|_{2}=1}} \| T_{wz}(\delta,\kappa,j\omega)x \|_{2}$$

$$non-convex, not computable ③$$

$$local optimization, K = K(\kappa)$$



Relaxations Do we want outer or inner?

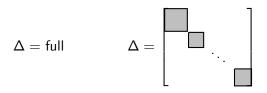
Outer relaxations

$$\begin{array}{ll} \min\limits_{\kappa} \max\limits_{\delta \in [-1,1]^m} \max\limits_{\omega \in [0,\infty]} \max\limits_{\|x\|_2=1} \|T_{wz}(\delta,\kappa,j\omega)x\|_2 \\ \min\limits_{\kappa} \max\limits_{\overline{\sigma}(\Delta) \leq 1} \max\limits_{\omega \in [0,\infty]} \max\limits_{\|x\|_2=1} \|T_{wz}(\Delta,\kappa,j\omega)x\|_2 \end{aligned}$$

$$\Delta = \begin{bmatrix} \delta_1 I_{r_1} & & \\ & \delta_2 I_{r_2} & \\ & & \ddots & \\ & & & \delta_m I_{r_m} \end{bmatrix}$$

Outer relaxations

 $\min_{\kappa} \max_{\overline{\sigma}(\Delta) \leq 1} \max_{\omega \in [0,\infty]} \max_{\|x\|=1} \|T_{wz}(\Delta,\kappa,j\omega)x\|_2$



- Over-estimation of true objective function
- Easier to compute, but ...
- Larger set of uncertainties \implies conservative
- Most widely known outer relaxations use μ -upper bounds.

Inner relaxations

$$\min_{\kappa} \max_{\substack{\delta \in [-1,1]^m \\ \kappa}} \max_{\omega \in [0,\infty]} \max_{\substack{\|x\|=1}} \max_{\substack{\|x\|=1}} \|T_{wz}(\delta,\kappa,j\omega)x\|_2$$
$$\min_{\kappa} \max_{\substack{\delta \in \Delta_d \\ \omega \in [0,\infty]}} \max_{\substack{\|x\|=1}} \max_{\substack{\|x\|=1}} \|T_{wz}(\delta,\kappa,j\omega)x\|_2$$

- $\Delta_d \subset [-1,1]^m \implies$ under-estimation of true objective function
- No stability/performance certificate on $[-1,1]^m$, only on Δ_d
- Δ_d typically finite, yet works on $[-1,1]^m$. Certificate ?

Discussion: inner versus outer relaxation

Observe:

• People concede that inner relaxations work better in practice, but insist that outer relaxations are theoretically sounder, as when work give robust stability certificate.

Disenchantment:

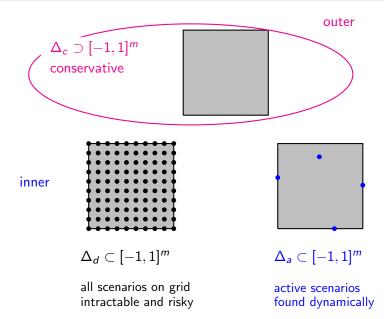
- Not true because outer relaxations do not come with a guarantee of success.
- Without certificate, both approaches are at equal rights theoretically, hence the better in practice wins.
- ♡ Therefore inner relaxation wins.

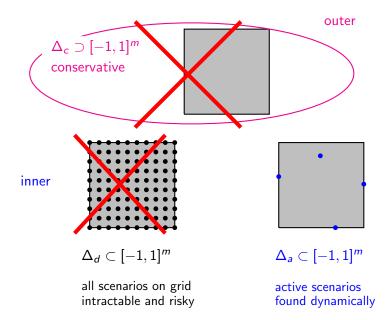
In the same vein (still trying to make us believe that outer approximations are better):

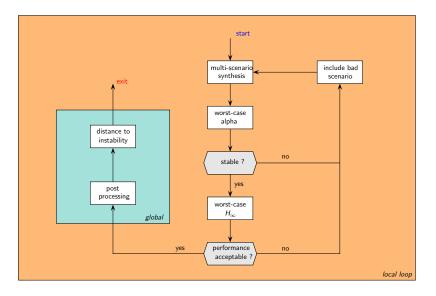
• Cannot we just degrade our performance specification more and more until it becomes possible to obtain a robustly stable controller? And having obtained this certificate, is this then not an advantage over the inner approximation ?

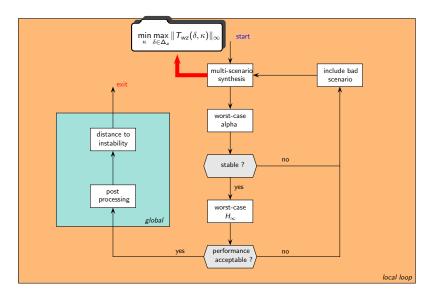
Disenchantment:

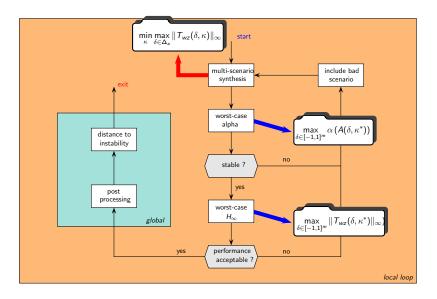
- ♠ No, this is not theoretically better, unless there is a guarantee that the degradation of performance leads to the certificate. (No case where this holds is known by the way).
- The fact that LMI people present certificates obtained by degrading does not mean anything. It just means they give in at an early stage and accept a feeble result.
- ♡ Certificates obtained by degrading performance are useless anyway, as performance is degraded. We can do better.

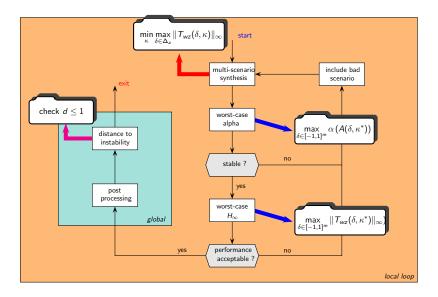












Instability optimization

Spectral abscissa:

Stability:

$$\alpha(A) = \max\{\operatorname{Re} \lambda : \lambda \text{ eigenvalue of } A\}$$

A stable
$$\iff \alpha(A) < 0$$

Destabilize by bad parameter scenario:

$$\alpha^* = \max_{\delta \in [-1,1]^m} \alpha \left(\mathcal{A}(\delta, \kappa^*) \right)$$

- If $\alpha^* < 0$ then stable for all $\delta \in [-1, 1]^m$; otherwise bad scenario.
- $\delta \mapsto \alpha \left(A(\delta, \kappa^*) \right)$ non-smooth and not locally Lipschitz

Spectral abscissa:

Stability:

$$\alpha(A) = \max\{\operatorname{Re} \lambda : \lambda \text{ eigenvalue of } A\}$$

A stable
$$\iff \alpha(A) < 0$$

Destabilize by bad parameter scenario:

$$\alpha^* = \max_{\delta \in [-1,1]^m} \alpha \left(A + B\Delta (I - D\Delta)^{-1} C \right)$$

- If $\alpha^* < 0$ then stable for all $\delta \in [-1, 1]^m$; otherwise bad scenario.
- $\delta \mapsto \alpha \left(A(\delta, \kappa^*) \right)$ non-smooth and not locally Lipschitz

Structured distance to instability:

$$d^* = \inf\{\|\delta\|_{\infty} : A + B\Delta(I - D\Delta)^{-1}C \text{ unstable}\}$$
$$= \sup\{d : A + B\Delta(I - D\Delta)^{-1}C \text{ stable for all } \|\delta\|_{\infty} \le d\}$$

d^{*} ≤ 1 ⇒ parametric robust stability over [-1, 1]^m
Need global optimum

Not to confuse with unstructured distance to instability $\beta(A) = \inf\{\overline{\sigma}(E) : A + E \text{ unstable}\}$ (Trefethen, Kressner, Kanzow, Benner, ...) is too easy Branch and bound

Global maximum

$$\alpha^* = \max_{\delta \in [-1,1]^m} \alpha \left(\mathcal{A}(\delta) \right)$$

Lower bound by local solver

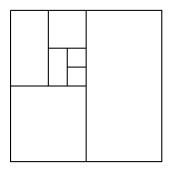
$$\underline{\alpha} = \max_{\delta \in [-1,1]^m} \alpha \left(\mathcal{A}(\delta) \right) \le \alpha^*$$

Upper bound on box Δ

$$\alpha^*(\Delta) = \max_{\delta \in \Delta} \alpha \left(A(\delta) \right)$$

Pruning test:

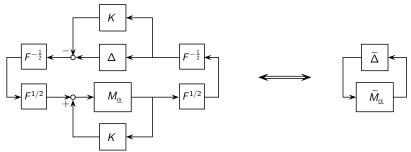
$$lpha^*(\Delta) \leqslant \underline{lpha} \implies \Delta$$
 can be pruned



Branching:

If Δ not pruned, then halved

Crucial elements:



- Loop transform: Test $\alpha^*(\Delta) \leq 1 \iff \alpha^* \leq 1$ for $M_{\underline{\alpha}}$.
- Then use conservative μ -upper bound (Fan, Tits, Doyle).
- Can store partial stability on frequency bands for daughter boxes (frequency axis sweep).
- Need high performance local solver to get good $\underline{\alpha}$.

Some information about the dimension of problems

Experiments:

Technique	States	decision variables κ	uncertain parameters δ	repetitions	CPU
nominal H_{∞} synthesis	200	50	-	-	seconds
nominal multi-objective	200	20	-	-	seconds
parametric robust H_{∞}	25	20	10	8	seconds to minutes

Technique	States	decision variables δ	repetitions	CPU
worst-case H_{∞}	35	11	6	seconds
worst-case α^*	35	10	6	seconds
distance d* to instability	70	14	39	seconds

Technique	States	decision variables δ	repetitions	CPU
branch & bound H_{∞}	35	11	6	seconds to hours
branch & bound α^*	35	12	6	seconds to hours
branch & bound d*	70	14	39	seconds to hours

method	type	appreciation	bottleneck
Integral Global Optimization Zheng method	probabilistic global	fast, reliable	-
SOS tools Parillo	global	useless	-
Lasserre's method	global	works for toy problems	is its own bottleneck
branch & bound Balak. & Boyd	global	slow	inefficient lower bound
wcgain	computes h*	not always reliable	dedicated
SMAC Toolbox ONERA	computes d*	fast, reliable	dedicated
dksyn	parametric robust <i>K</i>	conservative	controllers often not practical
hifoo	nominal H_∞	-	not all controller structures

Existing tools used to check results:

Conclusions for nominal H_{∞} -synthesis:

- Solved 2006: hinfstruct, systume
- Solving LMIs, Riccati equations practically obsolete.
- Hamiltonian linear algebra stunted to computing H_{∞} -norm.
- Non-smooth optimization techniques prevail.

Conclusions for parametric robust H_{∞} -synthesis:

- Solved 2015: \implies robust control toolbox
- Non-smooth optimization techniques again key to success.
- μ-singular value upper bounds still needed for pruning test in B&B.
- Lower bounds by fast non-smooth solver.
- DK-iteration (dksyn) outdated.
- Inner approximation beats outer approximation.

