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Abstract

We present a new method for solving a broad class of problems in robust synthesis.
The proposed method encompasses problems such as minimizing a nonlinear cost function
subject to Linear Matrix Inequality (LMI) constraints and is easily generalized to harder
problems where LMIs are replaced with Bilinear Matrix Inequalities (BMIs). At the core
of the proposed method, we take advantage of a primal-dual formulation of the optimality
conditions to construct a quadratic approximate model that is refined iteratively to solve
the original (hard) problem. More specifically, the method consists in solving a sequence
of indefinite quadratic programming problems in the primal space according to a trust
region strategy followed by an appropriate updating scheme for the dual variables. This
is an interior-point method in the sense that feasibility is maintained for both primal and
dual variables. The potentials of this new method are evaluated through robust synthesis
examples.

Keywords : interior-point methods, primal-dual algorithms, SDP, LMI techniques, BMI,
robust synthesis.

1 Introduction

It is now widely accepted that LMI methods provide a powerful framework for formulating and
solving problems in robust control theory [10]. Significant practical examples include:

e Lyapunov stability and performance analysis [20, 12],

e analysis of dynamic systems subject to IQC-defined (Integral Quadratic Constraint) com-
ponents such as parametric uncertainties, delays, signal saturations [33, 19, 5].

e H., H, and multi-channel/objective syntheses or relaxed variants [22, 30, 40].
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e gain-scheduling control via LPV (Linear Parameter-Varying) representations of the plant
(35, 1, 39].

This list is far from being exhaustive and further examples can be found in recent control
journals and conferences. Unfortunately, there are numerous problems of considerable practical
impact for which an LMI formulation is not possible or remains unknown. A few samples are

e fixed- or reduced-order and decentralized syntheses,

e robust synthesis with different classes of scalings/multipliers or parameter-dependent Lya-
punov functions,

e mixed control problems with both scheduled and uncertain parameters,
e simultaneous system structure and controller design,
e and combinations of the above.

These more delicate problems can be cast as either minimizing a linear objective subject to
nonlinear equality constraints in tandem with LMIs:

minimize cl'x
subject to h(z) =0 (1)
A(z) =0,

or, and this seems to be the most general situation, as minimizing a linear objective subject to
BMIs
minimize 'z 5
subject to B(z) = 0. 2)
In the previous formulations, x is the decision vector, h(x) is a nonlinear vector-valued function,
and A(x) and B(z) are linear, respectively bilinear symmetric matrix-valued expressions in xz:

N

N (3)
i=1 1<i<j<N

Recently, various interesting attempts have been made to solve at least locally these difficult
problems. In [26], the authors use alternating projections to solve reduced-order design prob-
lems. A similar scheme which exploits two equivalent formulations of the fixed-order control
problem is proposed in [29]. A successive linearization algorithm for static output feedback
design is discussed in [25]. In [24] the authors develop a specialized algorithm again for static
output feedback synthesis. A major issue in these works, as well as with customary D — K
iteration schemes, is that it appears delicate to establish global convergence to a local solution,
that is convergence to a local solution for any even remote starting point. Also, the rate of
convergence remains unknown in the vicinity of a local solution. A discussion on the difficulties
encountered with D — K schemes is provided in [28].

New potent and direct nonlinear-programming-based methods have been developped until
recently. In [31], Jarre proposes a primal method which constructs a sequence of iterates



through quadratic subproblems including a trust region strategy. A similar idea is developped
by Leibfritz and Mostafa in [32]. They use an SQP (Sequential Quadratic Programming) scheme
with trust regions applied to an appropriately defined barrier function to solve nonlinear SDP
problems.

In [17], we discuss an algorithm for solving a class of robust synthesis problems which
overcomes the above difficulties. The proposed method is of augmented Lagrangian type and
iteratively constructs and refines approximations of the original problem. These approximations
consist of quadratic programs suitably convexified in conjunction with LMI constraints, hence
are readily solved using current SDP codes. In [18], we expand on our preliminary ideas and
take advantage of duality to attain better local convergence rates. We used the terminology
Succesive Semi-Definite Programming (SSDP) to refer to this class of algorithms since SDP is
run sequentially on LMI constrained quadratic problems to approximate a local solution from
the interior of the LMI feasible set.

For other reasons, however, we think a more direct approach is desirable. Previous tech-
niques, though supported by highly reliable computational codes , hinge on a sequence of SDPs
which entail overcomputations. An accurate solution of each individual SDP is, indeed, nei-
ther required nor recommended as they tend to drive the iterates close to the boundary of the
feasible region. Also, these techniques suppose some sort of separation of the variables as in
D — K schemes or approximation with (convex) SDPs and consequently are unable to exploit
directions of negative curvatures or concavity of functions or constraints. This weakness also
has a direct impact on the efficiency on the method. The method in this work does not assume
separation, nor rely on convex approximations. Progress is generated even when concavity is
encountered and hence efficiency practically benefits from this feature.

The notation used throughout the paper is fairly standard. M7 is the transpose of the
matrix M. The notation Tr M stands for the trace of M. For Hermitian or symmetric matrices,
M > N means that M — N is positive definite and M > N means that M — N is positive
semi-definite. An LMI constraint is defined as

N
A(l‘) = AO + szAz t 0,

=1

and its homogeneous part will be denoted A, (x)

N
A, (x) = ZxZAZ
i=1

Also, for an LMI A(z) = 0, it is interesting, for computational efficiency reasons, to introduce
the notation A, a matrix representation of the operator A(.), that is,

A =col(Ay),col(As),...,col(An)], (4)

where col is the usual column operation on a matrix.

||M||r denotes the Frobenius norm of the matrix M. The notation A ® B designates the
Kronecker product of A and B and vec M stands for the column-wise vectorization operation
on a matrix M. Finally, the gradient of a real-valued function ®(z) is denoted V®(z) and
its Hessian V2®(x). We shall also use the notation z, to refer to the value of the variable z,
matrix or vector, at the next iteration.



2 Nonlinear cost with LMI constraints

The focus of this section is on problems that can be cast as minimizing a nonlinear cost function
subject to LMI constraints

minimize o(x)

P1 subject to A(z) = 0, (5)

where A(z) is as in (3) and ¢(x) is a twice continuously differentiable nonlinear function of .
As will become clear in the subsequent derivations, this class of program is instrumental
and will provide basic tools for the more practically interesting situation considered in Section
3. Also, it is worth mentioning that all arguments in the sequel generalize to the case where
LMIs are replaced with BMIs, that is A(x) is replaced with B(z), c.f. (3).
A primal method for solving P1 consists in introducing the barrier problem

rr%Ein F(z,pn) := ¢(x) — plogdet A(x) , (6)

which is well defined as long as the decision vector x belongs to the LMI feasible set. The
primal method then generates a sequence of feasible iterates x(uy), local solutions to (6) for
it = ji, for a sequence of barrier parameters p > 0, whose limiting value is zero.

Primal interior-point method

Step 0 [initialize] Choose initial ;1 > 0, a feasible z and an initial £ > 0.

Step 1 [inner steps| Given z, p and €, compute an approximate local solution z to (6) satisfying

IVE(zy,p)|| <e

Step 2 [update] Update the parameters p and € to py and £, respectively, so that they form
strictly decreasing sequences converging to zero. Return to Step 1.

Note that the inner steps involve constructing quadratic approximations of the function F(x, u1)
and generating steps using either a modified Newton method or a trust region strategy. See,
for instance, [8] for a general treatment of the latter techniques. It has been demonstrated that
this scheme is guaranteed to converge to a local solution under very mild assumptions [21, 37].
In spite of this simplicity, primal barrier methods are often delicate to implement in practice.
More precisely, the Hessian matrix (see Appendix A) is given as

V(@ 1) == V¢(x) + pA" (A(2) ™ @ A(z) 71 A, (7)

where A is defined in (4). The second term in this expression becomes dominant in the course
of the algorithm as the iterates come closer to the LMI boundary, and tends to generate dis-
torted search directions. Also, as p tends to zero, the underlying quadratic problem defining
the Newton step becomes increasingly ill-conditioned. A consequence is that the starting point
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for each outer iteration is required to be more and more accurate which may, and often will,
thwart the nice theoretical convergence properties of the method. Facing these difficulties, a
number of safeguarding techniques are necessary for a reliable implementation of the primal
method. A comprehensive discussion on that matter is provided in the expository paper [15]
in the restricted case of classical vector inequalities. These safeguarding techniques include
extrapolation to improve the starting point of each outer iteration and also primal-dual formu-
lations to bypass the difficulties due to ill-conditioning. This is what we consider hereafter. We
extend the work of [11] to the SD cone and show that similar constructions are possible.
Before going further, let us write down the first-order optimality conditions for the program
(6). This yields
Tr A(z) 1A,
Tr 1A
Vo) —u| ] ®)
Tr A(z) 'Ax

Alternatively, the Lagrangian function for P1 in (5) is described as
L(zx,Z):= ¢(x) — Tr ZA(x),

and the corresponding stationarity conditions are given as

Tr ZA1

G Il )
Tr ZAN

ZA(z) =0 (10)

A@) =0, Z=0 (11)

where Z is the dual (Lagrange multiplier) variable. The reader is referred to [41] for additional
details'. The first of these conditions is the standard stationarity conditions, while (10) and
(11) are the complementary and the primal-dual feasibility conditions, respectively. Direct
examination shows that critical points of pure primal problems parameterized by p correspond
to points satisfying the perturbed stationarity conditions in the original problem (5) defined as
(9), (11) and

ZA(z) = ul . (12)

The idea of primal-dual algorithms is therefore to base the iteration scheme on (9), (11)
and (12) in place of (7) and (8). Following this idea, a quadratic model for problem (5) about
the iterate x is obtained as

M(x+d, 1) == F(z, 1) + (Vo(z) — pA vec A(x) ™) d + %dT [Vip(z) + A" (Z @ A(z)~")A] d,
(13)

!Similar conditions are valid for BMIs whenever the Mangasarian-Fromovitz constraint qualification holds,
see [41]. The latter are always satisfied for LMI constraints provided that they admit a non-empty interior.
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where we have used the fact that

TI'MA1
Tr M A
r: ? = ATvec (MT) = ATvec (M),
TI'MAN

for any matrix M. Note that d is the step or displacement from z and that the model (13) is a
true approximation of the quadratic model of the purely primal problem. This approximation
is more accurate when the dual variable Z comes closer to uA(x)~"'. According to our analysis,
the displacement in the primal space can be determined using a modified Newton method or a
trust region strategy applied to the quadratic model (13). On the other hand, Z should satisfy
dual feasibility and the complementarity condition in order to meet the necessary criticality
conditions of a local solution. This will determine the displacement in the dual space.

The displacement in the dual space can be determined by applying Newton method to the
conditions (9) and (12). This is obtained by calculating a first-order approximation of the
relationships

Tr(Z+AZ)A
Vol +d) — 2 | S
Az +d)(Z+AZ) = pl
which gives
Tr AZAl Tr ZAI
TrAZA TrZA
Vied— | T ==V + | L (14)
Tr AZAN Tr ZAN
and
AZA(x)+ ZA(d) = —Z A(z) . (15)

Note that due to the lack of symmetry in the equation (15), the dual displacement AZ is
not generally symmetric and thus cannot be considered an acceptable step. As is common in
primal-dual SDP, we shall use a symmetrization procedure to enforce symmetry of the dual
step. There are many ways to carry out the symmetrization of the complementary conditions
and a comprehensive analysis of these techniques is given in [42] for SDP. In this paper, we have
used a dual search direction proposed by Monteiro and discussed in length by Zhang in [43], as
it leads to simple formulas that can be efficiently computed. Monteiro-Zhang’s symmetrization
is based on the formulas

A (Z + AZ)A(z + d) + (A(2)(Z + AZ)A(z + d))" = 2pA(z) .
This leads to the Newton step

1

AZ =—Z+ pA(z)™" - 3

[ZA(d)A(z)™ + (ZA(d)A(z)™")'] | (16)
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and thus the updating expression

7. = pA(x) "t - % (ZA()A@) " + (ZA(d)Alx) )T . (17)

Then, by eliminating AZ in (14), we infer the primal-dual Newton equations:
[VZp(z) + AT(Z ® A(z) ") A] d = =V (x) + pATvec A(z) ', (18)
2. = pA(x)™ - % (ZA(D)A)™ + (ZA(d) A@z) )] . (19)

It is interesting to mention that the primal step d can be generated either by using the
quadratic model (13) or the Newton equation (18). The quadratic programming formulation is
generally preferable as it guarantees descent in the barrier function (6) and global convergence
is guaranteed provided that the trust region radius (if this option is taken) is appropriately
selected at each iteration. To sum up, the proposed method is described below.

Primal-dual interior-point method with trust regions

Step 0 [initialize] Fix parameters 0 < 71 < 1 < 79, 1, 12, fypip and function e(u). Initialize p
and feasible x, Z.

Step 1 [inner steps] For given p and Z perform the following steps.

Step 1.1 [primal step with trust regions] Choose trust region radius r > 0 and solve quadratic
program
min M(z +d, p1)
]l <
Step 1.2 [acceptance of primal step| If A(z + d) > 0 compute

F(l"aﬂ)—F(l"eraﬂ)
M(x:/i) _M(x+dau),

p:

else set p = —o0.

If p > m (retain the step) v, = z + d and update Z to Z, according to (19),
otherwise r, =z and 7, = Z.

Step 1.3 [update radius]
vldl i p<m
re =9 elldl i p>mn
r if m<p<n.

Step 1.4 [stationarity stop test] Stop if
max {[|Z; A(zy) = pl|, [[V(s) — Alvec Z, ||} <e(n),
else go to Step 1.1.

Step 1 [update] Update p to po. Stop if o < pyyip else update go to Step 1.

Note that a step d is retained whenever it is feasible, A(x + d) > 0, and there is a good
agreement, between the quadratic predicted decrease and the decrease in the barrier function
p > m. The update of the trust region radius obeys a standard rule [38].
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2.1 Exploiting Dikin’s geometry

It may occur that due to the elongated shape of the feasible set A(x) > 0, iterates get stuck
to the boundary and unduly short steps take place. As is well-known in affine-scaling linear
programming methods, one can overcome this difficulty by rescaling the step coordinates in a
basis that, at least locally, captures the geometry of the feasible region. For the SD cone, an
interesting coordinate system is that given by Dikin’s ellipsoid [13, 9, 23]. It defines a region in
the feasible set where the current iterate can move without losing feasibility and is described
as

d"AT(A(z) '@ A(z) HAd < 1.

Up to a scalar multiple, the latter can be approximated by
d"AT(Z ® A(x) MHAd < 1,

which is nothing else but the second term in the Hessian matrix (13) and (18). The scaling
defined by the new coordinate system is given as

d = Rd,
where R Cholesky factorizes AT(Z @ A(x) ')A. The new trust region problem is therefore

min (Vo (z) — pATvec A(z) TR '+ Ld"R T [V2p(x) + AT(Z ® A(z) YA] R d,
subject to ||d]| <7,

while the rest of the algorithm remains unchanged.

3 Nonlinear equality and LMI constraints

In this section, we investigate a further complication of P1 in (5) in which LMI constraints are
in tandem with nonlinear equality constraints:

minimize o(x)
P2 subject to h(z) =0, (20)
A(x) = 0.

The second equation in this formulation determines the nonlinear constraints and the function
h from RY to R™ is twice continuously differentiable in its argument over some open set
containing {x : A(z) > 0}.

A straightforward extension of the primal method in (6) leads us to the penalty/barrier
problem

min F(x,p) = é(x) + ;—Z |h(z)[]* — plogdetA(z) . (21)

As before, this function incorporates a barrier term to secure LMI feasibility of iterates but
also a penalty term 7% |h(x)]|* which asymptotically drives the iterates towards the algebraic

manifold h(z) = 0. Note that penalty and barrier parameters are not independent as one could
expect but are inverse of each other up to a scalar multiple. The benefit of this restriction is
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mainly a simplification in the algorithm since only one parameter needs to be updated at each
outer iteration.

Using a primal method for solving (21) for a decreasing sequence fi, leads to the difficulties
already discussed in Section 2. It is therefore advisable to introduce dual SD cone variables
to improve the algorithm numerical behavior. This can be accomplished in exactly the same
way as for the simpler problem considered in Section 2 and thereby a similar method can be
constructed. This method, however, would not completely cope with the difficulties associated
with the penalty term which also gives rise to complications when p is small. It is well known
that the latter can be alleviated by augmenting the primal function with Lagrangian terms
associated with equality constraints. This method is referred to as the Augmented Lagrangian
method and a detailed treatment is given in Bertsekas’s master book [7]. In place of the
penalty/ barrier function in (21), we therefore consider the modified program

min F(x, A, 1) = 6(x) + \h(z) + 2% 1h(2)]|2 — plog det A() (22)

where A\ are Lagrange multipliers associated with equality constraints. Also, we update the
multipliers using the first-order classical rule (see [7, 17] for details):

Ay =A+co/ph(z). (23)

The associated quadratic model about the point x is given as

Mz +d A, 1) = Fla, ) + g()7d + %dT (H(2)]d, (24)
where .
g(z) == Vo¢(x)+ Vh(z)\ + EOVh(x) h(z) — pATvec A(z) ™!,
and
H(z) = V2¢(z) + i V2hi(\; + C—:hi) + C—:Vh(x)Vh(x)T + AT(Z® A(z) DA,

The outlined strategy is made more precise in the following algorithm. For simplicity, we
introduce the definition:

(@) = p(x) + \Th(z) + ﬁ 7 ()]

Primal-dual interior-point method
with equality constraints and trust regions

Step 0 [initialize] Fix parameters ¢q, 0 < 71 < 1 < 7o, 71, 72, g9 and a function ().

Initialize p, A and feasible z, 7, i.e. A(z) >0, Z > 0.

Hmin>

Step 1 [inner steps] For given p perform the steps.
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Step 1.1 [primal step with trust regions| Solve the quadratic program
min M(z +d, A, p)
ldl| <

Step 1.2 [acceptance of primal step] If A(x + d) = 0 compute

_ F(l‘,)\,ﬂ)—F(ﬂ?—i—d,)\,/[/)
B M(xa)‘au)_M(x+da>‘7/'L)7

else set p = —o0.
If p > ny (retain the step) x; = x + d, update Z to Z,, otherwise z, = z and
Z_|_ — Z

Step 1.3 [update radius|
nlldl i p<m
re=9q elldl it p=mn
r it m<p<n.

Step 1.4 [stationarity stop test] Stop the inner iterations if
max {[|Z; A(z) — pl|, [V (2s) — Alvec Zy ||} < ei(p), (25)
else return to Step 1.1.
Step 1 [update] Stop if p < piy and ||h(z)]| < ez else

update A to Ay if h(zy) < Bh(z),
update p to py otherwise
and go to Step 1.

The inner steps of the algorithm are nearly the same as those in Section 2. The algorithm
stops when both the barrier parameter and the nonlinear constraints are small enough. Indeed,
we know from our earlier studies [3, 17] that the nonlinear equality constraints do not need to be
satisfied exactly and that perturbations techniques can be applied to end up on the algebraic
variety h(z) = 0. Also, we only decrease i when the decrease in the equality constraints
is not satisfactory, otherwise we update the Lagrange multipliers A associated with equality
constraints in accordance with the first-order rule in (23).

4 Robust synthesis

In this section, we show how the proposed techniques can be used for robust control of LFT
(Linear Fractional Transformation) uncertain systems. The uncertain plant is described as

T A BA Bl B2 T

zan|l | Ca Daa Dar Dao (TN

z N Cl DIA DH D12 w (26)
Yy Cy  Don Dy 0 u

WA = A(t) ZA
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where A(t) is a time-varying matrix-valued parameter and is usually assumed to have a block-
diagonal structure in the form

A(t) = diag (..., 51, ..., Aj(t),...) € RF¥E (27)

and normalized such that
ANTA) <, t>0. (28)

Blocks denoted ;1 and A; are generally referred to as repeated-scalar and full blocks according
to the p analysis and synthesis literature [16, 14]. Hereafter, we are using the following notation:
u for the control signal, w for exogenous inputs, z for controlled or performance variables and
y for the measurement signal.

For the uncertain plant (26)-(28) the robust control problem consists in seeking a Linear
Time-Invariant (LTI) controller

Ttk = Agrk + Bgry,

2
u = Cgzg + Dgy, (29)

such that
e the closed-loop system (26)-(28) and (29) is internally stable,
e the Ls-induced gain of the operator connecting w to z is bounded by 7,

for all parameter trajectories A(t) defined by (28).

The characterization of the solutions to the robust control problem for LE'T plants requires
the definitions of scaling sets compatible with the parameter structure given in (27). Denoting
this structure as A, the following scaling sets can be introduced. The set of block-structured
scalings associated with the parameter structure A is defined as

Wa:={W: WA=AW, VA with structure A} .

With the above definitions and notations in mind, it is now well-known that such problems
can be handled via a suitable generalization of the Bounded Real Lemma [35, 1, 2] which
expresses as the existence of a Lyapunov matrix, a scaling W and controller state-space data
satisfying BMI constraints. Then, using the Projection Lemma [22] as the basic tool for reducing
nonconvex terms and variables the following algebraically constrained LMI characterization for
the solvability of the problem can be established. See [27, 36, 4] for proofs and insights on
problems in the same class.

Theorem 4.1 Consider the LFT plant governed by (26) and (28) with A assuming a block-
diagonal structure as in (27). Let Nx and Ny denote any bases of the null spaces of [Cy, Do, Do1, 0]
and [BY, DX,, DL, 0], respectively. Then, there exists a controller such that the (scaled) Bounded
Real Lemma conditions hold for some Lo gain performance v if and only if there exist a pair of
symmetric matrices (X,Y) and a pair of scalings (W, W) such that the structural constraints

W, W e Wa (30)
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hold and the LMIs

ATX + XA XBa+CXTT XB, cCcis cof ]
BIX +TCx —S+TDan+ DA\TT TDA, DL,S DI,
NE BT'X DL, T" —~yI  DY,S DI [Nx < 0, (31
SCx SDan SDpny =S 0
Cy Dia Dy, 0 =1 |
AY + VAT YCX + BATT YCI'  BaY B
CpAY + FB£ -2+ FDZA + DAAFT FD{A DaprY Dag
NF C.Y DiAT" —~vI DAY Dy [Ny < 0, (32
»BY YD\ y»pI, -% 0
B%F D£1 D%Fl 0 -1
X I S 0
—{[ Y]<0, —{0 2] <0 (33)

hold with the definitions
1 T 1 T l = =7 1 T
S = §(W+W ), T = §(W—W ), ¥ = §(W+W ), [':= §(W—W )
and subject to the algebraic constraints
Wl=W. (34)

Note that due to the algebraic constraints (34), the problem under consideration is nonconvex
and has been even shown to be NP-hard. See [6] and references therein. This feature is in stark
contrast with the associated Linear Parameter-Varying control problem for which the LMI
constraints (31)-(33) are the same but the nonlinear conditions (34) fully disappears. Finally,
the problem takes the form discussed in Section 3:

min y

subject to LMIs (31) — (33)

and algebraic constraint WW =1,
where x gathers all variables into a single vector = := (X, Y, W, W, v)-
According to our discussion in Section 3, the penalty-barrier function associated with this
problem is given as

F(z,p) =+ Tr (ATWW = 1)) + C—/jHWW — I||3 — plogdetA(z) .

Derivative informations on this function are provided in Appendix B.

5 Applications

In this section, we consider a simple illustration of the proposed algorithm. The example
consists of a mass-spring system depicted in Figure 1.
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FIGURE 1: Flexible system

It is characterized by the nominal values of the parameters
my = my = 0.5Kg ,k = 1N/m , f = 0.0025Ns/m.
We assume that relative uncertainties corrupt both £ and ms in the form

k= Fnominal (1 1 9%), m

= My nominal (14 0m,) -

An LFT representation of the uncertain mass-spring system is easily inferred from its dia-
gram representation in Figure 2.

)% 25,

m2
> T2 T2 Yy

» |~
@ =

_ / ™
m2 /
ws]. + / o)
+\ f o)
u 4:@ le ' 1

@ =
@ =

FIGURE 2: Diagram representation of mass-spring system

This leads to the LFT model

13

T 0 0 1 0 0 0 0 Ty
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with
A

—f
ws, o (Sk 0 255
1U5m2 B 0 5nm Z5m2 )

In this problem, we have used an optimal-control-related quadratic criterion in the form

max / T2+ (01u)?) db. (36)

weLg

where the exogenous signal w is a disturbance at the controller output. The first term in
the integral reflects damping and high gain requirements for good tracking properties of the
position of the second mass x5, whereas the second term translates constraints in control signal
energy. Standard manipulations exploiting (35) and (36) then gives the LFT synthesis plant in
the form (26).

A
A wa
Va Va
g P(s) v
Y u
K(s)

FIGURE 3: Synthesis structure with tradeoff parameter

We have used the primal-dual algorithm in Section 3 to find a solution to this problem.
Our choice of parameters is 17, = 0.05, 7o = 0.9, v; = 1/3 and ~, = 3 for updating the trust
region radius. We have chosen = 0.5 to update A and p. The inner stop test is based on the
following rule

e1(p) := max {le — 3, u} ,

and fu,i, = le — 2 for the outer stop test. Also, .y is updated with py = p/2.

In order to tradeoff the relative contributions of the uncertainty channel and the performance
channel, an ajustment « parameter has been introduced as in Figure 3. The case o = 0 corre-
sponds to a pure nominal H., synthesis with no parametric uncertainty while the uncertainty
level increases with .

Results for « = 0 and o = 0.1 are depicted in Figures 4 and 5, respectively. For each
controller, we provide its root locus, its Nichols plot (upper right picture). The bottom left
picture shows the parametric robustness of the controller. The grey area corresponds in the
parameter space (O, dm,) to the stability region which has been estimated by an exhaustive
search on a grid of points. The square delimits variations up to 30% of the nominal values.
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Hence, the closed-loop system is stable for variations up to 30% in the parameters whenever the
square is entirely contained in the grey area. The bottom right picture displays a superposition
of the x5 step responses associated with the nominal and corner values of the parameters for
the 30% percent variation square. As can be expected, the pure H,, design is very sensitive
to parameter variations due to pole/zero cancellation. The robust design, however, provides a
very satisfactory answer in this respect.
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FIGURE 4: Results with a = 0, H,, nominal design
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It is worth mentioning that the proposed technique recovers the pure H,, controller in the
case a = (0. Hence, there is no loss due to non-global optimality for &« = 0. The algorithm
histogram is shown in Table 1, Appendix C for the case a = 0.1. These results are typical
of what we observed in 8 different control problems. Columns in the table display the time
histories of the penalty parameter, the barrier parameter, the current iterate feasibility (< 0
for feasibility), the trust region radius, the nonlinear constraint norm, 7, the value of the
barrier/penalty function in (22), the maximum norm of the stationnarity conditions in (25).

With our choice of parameters, the problem is solved in 149 inner iterations corresponding
to 27 outer iterations. This number compares favorably to the 645 inner iterations required
with the SSDP method in [17]. A signicant amount (> 20%) of inner iterations correspond
to rejection of the step in the trust region strategy, hence, are much less costly than accepted
steps since gradients and Hessians need not to be recomputed. When p is updated, we observe
a jump in the value of the stationnarity conditions. This means that at least in the early
iterations, the computed point is not a good starting point for the next outer iteration and that
the algorithm can be significantly accelerated through extrapolation techniques as suggested
in [15]. In the final steps, however, there is only one inner iteration for each outer iteration
corresponding to updating the Lagrange multiplier A and convergence to a local solution is
obtained very quickly.

6 Conclusion

In this paper, we have described a very promising algorithm for solving hard problems in robust
control theory. It takes advantage of a primal-dual formulation of the stationnary conditions and
uses a trust region strategy for generating the primal steps. Each primal step is followed by an
appropriate adjustment of the dual SD cone variables. Algthough, the proposed technique has
proved satisfactory in a number of examples, it remains a prototype and additional algorithmic
and numerical issues are of concerned. This will be discussed in the companion paper [34].
Also, application of the proposed ideas to the more general class of BMI problems will be
investigated.

A Derivatives of LMI logarithmic barrier

The natural barrier function for an LMI
N
A(l‘) = AO + szAz t 0,
i=1

is defined as

b(z) := —logdet(A(x)) .

16



Its gradient vector and Hessian matrix are easily computed using straightforward variational
arguments. The gradient vector is obtained as

Tr A(z)~' 4y

TrA(z) A
Vb(z) = — rA(@) 4 = —ATvec A(x)™!,

Tr A(.ZU)_IAN
and the Hessian matrix obeys the form

Vih(z) = (Tr A(z) ' Aid(z) ' 45)) = AT(A(2) " @ Az) 1A,

where the matrix A is defined in (4).

B Derivatives of penalty /barrier for robust control prob-
lem

We assume here that the decision vector x gathers all variables into a single vector with the
arrangement x := (X, Y, W, W ~).

B.1 Gradient

The gradient of the penalty/barrier function can be computed as follows.

e Compute

B W 1, g v (3 BT, g v (A + 8).

e Define a linear transformation 7" mapping vec W into a vector of smaller size which only
retains its nonzero entries (W is a block-diagonal matrix).

e Form total gradient as
07,1
VF(z,u) = | diag(T,T) [gw} — pATvec A(z) ™,

w

with the definition 7 := @ and n is the plant’s order.

B.2 Hessian

The Hessian matrix of the penalty/barrier function can be computed according to the following
procedure.

17



e Compute

o co/u WWT &I - *
YW T" A+ e/ EQT) +ao/uWeW c/pleWI'W

where J is a permutation matrix such that vec (MT) = J vec (M).

e Construct the augmentation

H o = diag (0n5, Hyp, 0)
e Deduce the total Hessian as
H:=H,;+pA"(A(z) ' @ A(x) HA.

Note that the second term in the last expression is approximated by
AT(Z @ A(z)™')A

in the proposed primal-dual technique.
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C Algorithm histogram
| it. | co/1 w feas. rad. | nl ~ f stat.
1 5.000e-03 1.000e-01 -9.551e-06 3 3.851e-04 5.024e+00 -2.053e+01 7.308e+01
2 5.000e-03 1.000e-01 -9.551e-06 1 3.851e-04 5.024e+00 -2.053e+01 7.308e+01
3 5.000e-03 1.000e-01 -9.551e-06 3.333e-01 3.851e-04 5.024e+00 -2.053e+01 7.308e+01
4 5.000e-03 1.000e-01 -9.551e-06 1.111e-01 3.851e-04 5.024e+00 -2.053e4-01 7.308e+01
5 5.000e-03 1.000e-01 -9.551e-06 3.704e-02 3.851e-04 5.024e+00 -2.053e4-01 7.308e+01
6 5.000e-03 1.000e-01 -1.518e-04 3.704e-02 9.519e-04 5.021e+00 -2.083e4-01 7.597e+03
7 5.000e-03 1.000e-01 -1.543e-04 1.111e-01 1.210e-03 5.023e+00 -2.088e4-01 4.782e+02
8 5.000e-03 1.000e-01 -1.887e-04 3.333e-01 4.841e-03 5.033e+00 -2.107e+01 5.743e+02
9 5.000e-03 1.000e-01 -2.760e-04 1 2.356e-02 5.071e+00 -2.138e4-01 2.270e+02
10 5.000e-03 1.000e-01 -7.097e-04 3 3.034e-01 5.051e+00 -2.209e4-01 1.778e+401
11 5.000e-03 1.000e-01 -7.097e-04 1 3.034e-01 5.051e+00 -2.209e4-01 1.778e+401
12 5.000e-03 1.000e-01 -7.097e-04 3.333e-01 3.034e-01 5.051e+00 -2.209e4-01 1.778e+401
13 5.000e-03 1.000e-01 -4.088e-03 3.333e-01 1.865e4-00 5.222e+00 -2.294e+-01 1.246e4-02
14 5.000e-03 1.000e-01 -4.983e-03 1 4.382e+00 4.975e+00 -2.330e+01 1.291e4-01
15 5.000e-03 1.000e-01 -1.260e-02 3 4.041e+01 4.108e+00 -2.490e+-01 7.944e+00
16 5.000e-03 1.000e-01 -1.260e-02 1 4.041e+01 4.108e+00 -2.490e+-01 7.944e+00
17 5.000e-03 1.000e-01 -5.636e-03 1 7.259e+01 3.144e+00 -2.548e+-01 5.722e+00
18 5.000e-03 1.000e-01 -5.636e-03 3.333e-01 7.259e+01 3.144e+00 -2.548e+-01 5.722e+00
19 5.000e-03 1.000e-01 -5.636e-03 1.111e-01 7.259e+01 3.144e+00 -2.548e+-01 5.722e+00
20 5.000e-03 1.000e-01 -5.636e-03 3.704e-02 7.259e+01 3.144e+00 -2.548e+-01 5.722e+00
21 5.000e-03 1.000e-01 -2.210e-02 3.704e-02 6.935e+01 3.108e+00 -2.561le+401 1.740e4-01
22 5.000e-03 1.000e-01 -2.305e-02 1.111e-01 6.348e+01 3.080e+00 -2.568e+4-01 4.634e+00
23 5.000e-03 1.000e-01 -2.994e-02 3.333e-01 6.979e+01 2.981e+00 -2.589e4-01 3.459e+00
24 5.000e-03 1.000e-01 -4.613e-02 1 7.360e+01 2.639e+00 -2.627e+01 1.138e+400
25 5.000e-03 1.000e-01 -4.613e-02 3.333e-01 7.360e+01 2.639e+00 -2.627e+01 1.138e+400
26 5.000e-03 1.000e-01 -3.841e-02 3.333e-01 8.474e+01 2.284e+00 -2.672e+01 1.793e+4-00
27 5.000e-03 1.000e-01 -7.160e-02 1 8.137e+01 2.060e+00 -2.692e4-01 6.394e-01
28 5.000e-03 1.000e-01 -1.356e-01 1 5.575e+01 1.769e+400 -2.723e+01 8.579e-01
29 5.000e-03 1.000e-01 -1.743e-01 3 1.508e+02 1.801e+4-00 -2.751e+401 4.345e-01
30 5.000e-03 1.000e-01 -1.743e-01 1 1.508e4-02 1.801e4-00 -2.751e+401 4.345e-01
31 5.000e-03 1.000e-01 -1.743e-01 3.333e-01 1.508e4-02 1.801e4-00 -2.751e+401 4.345e-01
32 5.000e-03 1.000e-01 -1.826e-01 3.333e-01 7.233e+01 1.694e4-00 -2.753e+401 5.809e-01
33 5.000e-03 1.000e-01 -1.952e-01 3.333e-01 1.608e4-02 1.712e4-00 -2.765e+401 8.571e-02
34 1.000e-02 5.000e-02 -1.952e-01 3.333e-01 1.608e4-02 1.712e4-00 -1.237e+4-01 4.841e-01
35 1.000e-02 5.000e-02 -1.039e-01 1 4.638e+01 1.327e4-00 -1.285e+4-01 2.791e-01
36 1.000e-02 5.000e-02 -1.039e-01 3.333e-01 4.638e+01 1.327e4-00 -1.285e+4-01 2.791e-01
37 1.000e-02 5.000e-02 -1.039e-01 1.111e-01 4.638e+01 1.327e4-00 -1.285e+4-01 2.791e-01
38 1.000e-02 5.000e-02 -1.011e-01 1.111e-01 3.089e+01 1.210e4-00 -1.292e+4-01 1.944e-01
39 1.000e-02 5.000e-02 -8.311e-02 1.111e-01 2.685e+401 1.101e+4-00 -1.295e4-01 1.104e-01
40 1.000e-02 5.000e-02 -7.421e-02 3.333e-01 3.171e+401 1.020e+4-00 -1.297e+401 2.014e-02
41 1.000e-02 5.000e-02 -7.421e-02 3.333e-01 3.171e+401 1.020e+4-00 -1.265e4-01 2.602e-01
42 1.000e-02 5.000e-02 -7.421e-02 1.111e-01 3.171e+401 1.020e+4-00 -1.265e4-01 2.602e-01
43 1.000e-02 5.000e-02 -7.207e-02 3.333e-01 1.403e+4-01 1.017e+400 -1.272e+401 5.358e-02
44 1.000e-02 5.000e-02 -7.207e-02 1.111e-01 1.403e+4-01 1.017e+400 -1.272e+401 5.358e-02
45 1.000e-02 5.000e-02 -6.965e-02 1.111e-01 1.096e+01 1.014e+4-00 -1.272e+401 3.034e-02
46 1.000e-02 5.000e-02 -6.965e-02 3.333e-01 1.096e+01 1.014e+4-00 -1.261e4-01 1.294e-01
47 1.000e-02 5.000e-02 -6.965e-02 1.111e-01 1.096e+01 1.014e+4-00 -1.261e4-01 1.294e-01
48 1.000e-02 5.000e-02 -6.852e-02 1.111e-01 6.426e+00 1.025e4-00 -1.263e+-01 5.421e-02
49 1.000e-02 5.000e-02 -6.787e-02 1.111e-01 6.103e+00 1.018e4-00 -1.263e+-01 1.193e-02
50 2.000e-02 2.500e-02 -6.787e-02 3.333e-01 6.103e+00 1.018e4-00 -5.650e+4-00 8.312e-02
51 2.000e-02 2.500e-02 -5.261e-03 3.333e-01 1.888e-01 7.629e-01 -5.715e4-00 2.720e-01
52 2.000e-02 2.500e-02 -2.685e-02 3.333e-01 1.692e-01 7.757e-01 -5.776e+4-00 6.348e-01
53 2.000e-02 2.500e-02 -2.521e-02 3.333e-01 1.190e4-00 7.496e-01 -5.805e4-00 1.461e-01
54 2.000e-02 2.500e-02 -2.485e-02 1 9.183e-01 7.529e-01 -5.809e4-00 7.678e-03
55 2.000e-02 2.500e-02 -2.447e-02 3 5.694e-01 7.528e-01 -5.800e+4-00 9.161e-03
56 4.000e-02 1.250e-02 -5.687e-03 3 5.685e-02 6.424e-01 -2.531e4-00 3.669e-02
57 4.000e-02 1.250e-02 -1.028e-02 9 3.634e-02 6.507e-01 -2.542e4-00 8.083e-02
58 4.000e-02 1.250e-02 -8.660e-03 27 2.776e-02 6.273e-01 -2.567e+400 1.959e-01
59 4.000e-02 1.250e-02 -2.222e-03 27 1.308e-02 5.793e-01 -2.606e4-00 9.338e-01
60 4.000e-02 1.250e-02 -9.364e-03 27 2.394e-02 5.652e-01 -2.635e4-00 9.345e-01
61 4.000e-02 1.250e-02 -7.163e-03 81 1.640e-02 5.480e-01 -2.660e4-00 8.511e-01
62 4.000e-02 1.250e-02 -6.618e-03 81 1.002e-02 5.140e-01 -2.705e+4-00 1.068e+00
63 4.000e-02 1.250e-02 -8.162e-03 243 6.322e-03 4.998e-01 -2.734e+4-00 2.785e+00
64 4.000e-02 1.250e-02 -8.162e-03 81 6.322e-03 4.998e-01 -2.734e+4-00 2.785e+00
65 4.000e-02 1.250e-02 -1.044e-02 81 2.053e-03 4.827e-01 -2.753e4-00 1.247e4-00
66 4.000e-02 1.250e-02 -9.973e-03 243 4.181e-03 4.744e-01 -2.771e4-00 1.298e-01
67 4.000e-02 1.250e-02 -9.697e-03 729 4.832e-03 4.531e-01 -2.804e4-00 1.260e4-00
68 4.000e-02 1.250e-02 -9.697e-03 243 4.832e-03 4.531e-01 -2.804e4-00 1.260e4-00
69 4.000e-02 1.250e-02 -1.112e-02 729 1.641e-03 4.418e-01 -2.825e4-00 7.513e-01
70 4.000e-02 1.250e-02 -4.696e-03 2.060e+4-03 1.601e-04 4.130e-01 -2.855e4-00 7.474e+00
71 4.000e-02 1.250e-02 -4.696e-03 6.866e+02 1.601e-04 4.130e-01 -2.855e4-00 7.474e+00
72 4.000e-02 1.250e-02 -7.809e-03 6.866e+02 4.282e-03 4.003e-01 -2.869e4-00 7.017e+00
73 4.000e-02 1.250e-02 -1.135e-02 2.060e+4-03 5.136e-05 4.004e-01 -2.889e4-00 6.938e+00
74 4.000e-02 1.250e-02 -1.275e-02 2.060e+03 2.250e-04 3.901e-01 -2.920e4-00 9.015e+00
75 4.000e-02 1.250e-02 -8.182e-03 6.180e+403 8.408e-03 3.775e-01 -2.937e+4-00 5.673e+00
76 4.000e-02 1.250e-02 -2.476e-03 6.180e+403 2.455e-02 3.573e-01 -2.953e4-00 2.003e+01
7 4.000e-02 1.250e-02 -1.065e-02 6.180e+403 5.401e-04 3.631e-01 -2.979e+4-00 2.404e+01
78 4.000e-02 1.250e-02 -1.092e-02 6.180e+403 1.050e-03 3.586e-01 -2.994e4-00 8.453e+00
79 4.000e-02 1.250e-02 -8.745e-03 1.854e+04 1.751e-03 3.494e-01 -3.004e+4-00 3.130e+00
80 4.000e-02 1.250e-02 -8.234e-03 5.562e+04 3.591e-05 3.409e-01 -3.024e+4-00 8.047e+00

TABLE 1: Algorithm histogram for mass-spring system

Computations with MINQ quadratic solver
on SUN ultra 5.
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| it | co/p | I | feas. | rad. | nl | ~ | f | stat.
81 4.000e-02 250e-02 -6.624e-03 1.669e+05 3.261e-03 3.271e-01 -3.052e+00 3.840e+01
82 4.000e-02 250e-02 -6.624e-03 5.562e+04 .261e-03 3.271e-01 -3.052e+00 3.840e+01
83 4.000e-02 250e-02 -5.490e-03 5.562e+04 .790e-03 3.228e-01 -3.066e-+00 4.504e+401
1
5

84 4.000e-02 250e-02 -5.876e-03 .669e+05 .964e-05 3.219e-01 -3.077e4+00 1.462e+01
85 4.000e-02 .088e-05 3.169e-01 -3.097e+00 8.288e-+-00
86 4.000e-02 .547e-02 3.058e-01 -3.121e+4-00 1.000e+-02
87 4.000e-02 .547e-02 3.058e-01 -3.121e+4-00 1.000e+-02
88 4.000e-02 .478e-03 3.023e-01 -3.133e+4-00 9.806e+-01
89 4.000e-02 .625e-04 3.034e-01 -3.142e4-00 1.403e+-01
90 4.000e-02 .595e-04 3.000e-01 -3.158e4-00 3.580e+01
91 4.000e-02 .518e-03 2.929e-01 -3.180e+-00 1.606e+-02
92 4.000e-02 250e-02 -2.320e-03 1.330e4-07 .425e-03 2.886e-01 -3.204e4-00 8.814e+01
93 4.000e-02 250e-02 -2.255e-03 3.989e+07 .903e-04 2.870e-01 -3.215e4-00 2.444e+402

3
1
4
250e-02 -5.410e-03 5
1

1

2

1

1

6

3

2

94 4.000e-02 250e-02 -1.974e-03 3.989e+07 1.513e-03 2.850e-01 -3.224e4-00 8.107e+01

3

3

3

2

2

2

2

1

6

3

1

250e-02 -3.852e-03 1.477e4-06
250e-02 -3.852e-03 4.924e+405
250e-02 -3.325e-03 4.924e+405
250e-02 -3.648e-03 1.477e4-06
250e-02 -3.440e-03 4.432e+06
250e-02 -2.703e-03 1.330e4-07

.006e+05

95 4.000e-02 250e-02 -1.912e-03 3.930e+07 .694e-04 2.841e-01 -3.227e4-00 3.944e+01
250e-02 -1.863e-03 2.569e+07 .264e-04 2.837e-01 -3.228e4-00 1.343e+4-00
250e-02 -1.843e-03 1.407e4-07 .014e-04 2.835e-01 -3.228e+-00 1.325e+-00
250e-02 -1.833e-03 7.129e4-06 .984e-04 2.834e-01 -3.228e+-00 2.997e-01
250e-02 -1.829e-03 3.648e+06 .983e-04 2.833e-01 -3.228e+-00 7.855e-02
250e-02 -1.826e-03 1.688e+06 .985e-04 2.833e-01 -3.228e+-00 1.721e-02
250e-02 -1.825e-03 7.860e+05 .987e-04 2.833e-01 -3.228e+-00 3.635e-03
250e-02 -1.833e-03 .429e-04 2.832e-01 -3.228e+-00 3.510e-05
250e-02 -1.838e-03 .791e-05 2.831e-01 -3.228e+-00 2.896e-05
250e-02 -1.841e-03 .216e-05 2.830e-01 -3.228e+-00 2.549e-05
250e-02 -1.843e-03 .519e-05 2.829e-01 -3.228e+-00 2.073e-05
250e-02 -1.845e-03 7.158e-06 2.829e-01 -3.228e4-00 1.611e-05
250e-02 -1.845e-03 3.366e-06 2.829e-01 -3.228e4-00 1.277e-05
250e-02 -1.846e-03 1.580e-06 2.829e-01 -3.228e4-00 9.882e-06
250e-02 -1.846e-03 7.399e-07 2.829e-01 -3.228e4-00 7.194e-06
250e-02 -1.846e-03 3.483e-07 2.829e-01 -3.228e4-00 9.338e-07
250e-02 -1.846e-03 3.333e-01 3.483e-07 2.829e-01 -3.228e4-00 1.818e-03

96 4.000e-02
97 4.000e-02
98 4.000e-02
99 4.000e-02
100 4.000e-02
101 4.000e-02
102 4.000e-02
103 4.000e-02
104 4.000e-02
105 4.000e-02
106 4.000e-02
107 4.000e-02
108 4.000e-02
109 4.000e-02
110 4.000e-02
111 4.000e-02

HWWWWwwwww

112 8.000e-02 250e-03 -8.622e-04 3 5.563e-02 2.358e-01 -1.491e4-00 3.797e-01
113 8.000e-02 250e-03 -1.040e-03 3 6.344e-02 2.440e-01 -1.493e4-00 1.950e+-00
114 8.000e-02 250e-03 -1.041e-03 9 6.371e-02 2.435e-01 -1.493e4-00 2.374e-02
115 8.000e-02 250e-03 -1.038e-03 27 6.361e-02 2.434e-01 -1.493e400 2.286e-03
116 1.600e-01 125e-03 -5.951e-04 3 7.064e-02 2.231e-01 -6.402e-01 1.346e-01
117 1.600e-01 125e-03 -6.371e-04 9 7.183e-02 2.241e-01 -6.405e-01 6.890e-01
118 1.600e-01 125e-03 -6.393e-04 27 7.093e-02 2.240e-01 -6.405e-01 4.551e-03
119 3.200e-01 563e-03 -3.882e-04 3 3.474e-02 2.114e-01 -2.179e-01 5.178e-02
120 3.200e-01 563e-03 -3.999e-04 9 3.574e-02 2.114e-01 -2.181e-01 2.966e-01
121 3.200e-01 563e-03 -4.023e-04 27 3.489e-02 2.114e-01 -2.181e-01 3.301e-02
122 3.200e-01 563e-03 -4.006e-04 81 3.486e-02 2.114e-01 -2.181e-01 1.033e-02
123 3.200e-01 563e-03 -3.959e-04 243 3.492e-02 2.112e-01 -2.182e-01 7.428e-02
124 3.200e-01 563e-03 -3.821e-04 729 3.544e-02 2.109e-01 -2.185e-01 2.875e-01
125 3.200e-01 563e-03 -3.439e-04 729 3.961e-02 2.099e-01 -2.191e-01 9.849e-01
126 3.200e-01 563e-03 -3.220e-04 2187 3.706e-02 2.092e-01 -2.197e-01 9.343e-01
127 3.200e-01 563e-03 -3.220e-04 729 3.706e-02 2.092e-01 -2.197e-01 9.343e-01
128 3.200e-01 563e-03 -2.941e-04 2187 3.805e-02 2.087e-01 -2.200e-01 6.385e-01
129 3.200e-01 563e-03 -2.941e-04 729 3.805e-02 2.087e-01 -2.200e-01 6.385e-01
130 3.200e-01 563e-03 -2.746e-04 2187 3.669e-02 2.083e-01 -2.203e-01 7.848e-01
131 3.200e-01 563e-03 -2.746e-04 729 3.669e-02 2.083e-01 -2.203e-01 7.848e-01
132 3.200e-01 563e-03 -2.563e-04 2187 3.635e-02 2.080e-01 -2.205e-01 6.320e-01
133 3.200e-01 563e-03 -2.563e-04 729 3.635e-02 2.080e-01 -2.205e-01 6.320e-01
134 3.200e-01 563e-03 -2.412e-04 2187 3.576e-02 2.078e-01 -2.206e-01 5.287e-01
135 3.200e-01 563e-03 -2.412e-04 729 3.576e-02 2.078e-01 -2.206e-01 5.287e-01
136 3.200e-01 563e-03 -2.280e-04 2187 3.537e-02 2.076e-01 -2.207e-01 4.667e-01
137 3.200e-01 563e-03 -2.108e-04 2187 3.633e-02 2.074e-01 -2.207e-01 7.787e-01
138 3.200e-01 563e-03 -2.078e-04 6561 3.383e-02 2.074e-01 -2.207e-01 1.463e-01
139 3.200e-01 563e-03 -2.049e-04 19683 3.377e-02 2.074e-01 -2.207e-01 4.030e-02
140 3.200e-01 563e-03 -2.048e-04 59049 3.368e-02 2.074e-01 -2.207e-01 6.520e-05
141 3.200e-01 563e-03 -2.394e-04 3 5.032e-04 2.018e-01 -2.145e-01 1.793e-01
142 3.200e-01 563e-03 -2.430e-04 3 6.513e-04 2.022e-01 -2.146e-01 4.179e-01
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143 3.200e-01 563e-03 -2.437e-04 9 6.307e-04 2.023e-01 -2.146e-01 2.965e-03
144 3.200e-01 563e-03 -2.488e-04 3 7.836e-06 2.016e-01 -2.144e-01 7.588e-03
145 3.200e-01 563e-03 -2.499e-04 3 1.753e-07 2.016e-01 -2.144e-01 3.167e-04
146 3.200e-01 563e-03 -2.500e-04 3 1.643e-09 2.015e-01 -2.144e-01 6.549e-06
147 3.200e-01 563e-03 -2.499e-04 3 1.778e-11 2.015e-01 -2.144e-01 1.012e-06
148 3.200e-01 563e-03 -2.499e-04 3 3.059e-15 2.015e-01 -2.144e-01 1.192e-06
149 3.200e-01 563e-03 -2.499e-04 3 1.815e-13 2.015e-01 -2.144e-01 1.138e-06

TABLE 2: Algorithm histogram continued
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